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ABSTRACT 

This technical report summarizes the image processing research 

activities performed by t.e University of Southern California during the 

period of 1 September 1972 to 28 February 1973 under Contract No. 

F08606-72-C-0008 »M, the Advanced Research Projects Agency. 

Information Processing Techniques Office. 

The research program,  entitled,   "Image Processing Research. " 

has as its primary purpose the analysis and development of techniques and 

systems for efficiently generating,  processing,  transmitting, and display- 

ing visual images and two dimensional data arrays.    Research is oriented 

tJWard digital processing and transmission systems.    Five task areas 

are reported on:    (1) Image Coding Projects,  the investigation of digital 

bandwidth reduction coding methods; (2) Image Enhancement and Restora- 

tion Projects:    the improvement of image fidelity and presentation format; 

^ lyage Data Extraction Projects:    the recognition of objects within 

pictures and quantitative measurement of image features; (4) Image 

Analysis Projects,  the development of quantitative measures of image 

quality and analytic representation; (5) Imape Processing Support 

PrOJectS'  development of image processing hardware and software 
support systems. 
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1.    Research Project Overview 

This report describes the progress and results of the University 

of Southern California image processing research study for the period of 

I September 1972 to 28 February 1973. 

The image processing research study has been subdivided into 

five projects: 

Image Coding Projects 

Image Restoration and Enhancement Projects 

Image Data Extraction 

Image Analyses Projects 

Image Processing Support Projects 

In image coding the orientation of the research it toward the development 

of digital image coding systems that represent monochrome and color 

images with a minimal number of code bits.    Image restoration if the 

task of improving the fidelity of an image in the sense of compemating 

for image degradations.    In image enhancement,  picture manipulation 

processes are performed to provide a more subjectively pleasing image 

or to convert the image to a form rrore amenable to human or machine 

analysis.    The objectives of the image data  extraction projects are the 

registration of images,  detection of objects witHn pictures and measure- 

ments of image features.    The image anal/sio project compr ses the 

background research effort into the basic structure of images in order 

io develop meaningful quantitative characterizations of an image.    Finally, 

the image support projects include research on image processing 

computer languages and the development of expe. imental equipment for 

the sensing,  processing, and display of images. 

The next section of this report summarizes some of the research 

project activities during the past six months.    Sections 3 to 7 describe 

the research effort on the projects listed above during the reporting 

period.    Section 8 contains a short description of new projects that are 



being initiated, and are not yet to the reporting stage.    Section 9 is a list 

of publications by project members. 
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2'    Research Project Activities 

The following sections describe some of the significant project 

activities of the past six months: 

Image Processing Institute.    The USC group involved in image processing 

researchhas been designated as an Institute within the School of 

Engineering.    Other Institutes of the School include:    the Information 

Sciences Institute,  the Biomedical Engineering Institute,  and the 

Transportation Institute. 

USC Engineer Special Issue.    The December 1972 issue of the USC 

Engineer--a quarterly magazine published by USC Engineering students-- 

has been devoted to image processing research at USC.    The magazine 

contains several survey articles at the "Scientific American" level 

describing image processing topics.    Copies may be obtained from the 

Institute. 

Image CodinR Symposium.    The University of Southern California hosted 

the Fourth Picture Coding Symposium on 22-24 January 1973.    Over 

eighty research workers in the field attended, with a third of the attendance 

from foreign countries.    Topics of the conference included:   properties of 

the human observer; facsimile coding;  intraframe picture coding;  inter- 

frame television coding;  color image coding; and multispectral image 

data coding.   An image coding contest was held at the conference to 

determine the best image coding algorithms a id systems for monochrome 

and color images.    The Slant transform coding system, developed at USC, 

received three of the seven achievement awards presented at the conference. 



3.    Image Coding Projects 

The research effort in image coding has been directed toward a 

wide variety of applications.    Coding systems are under investigation for: 

monochrome and color imagery;  slow scan and real time television;  and 

information preserving and controlled fidelity operation.    The results of 

this research study during the past six months are summarized here and 

presented in greater detail in subsequent sections. 

A study of the application of slant transform coding techniques to 

natural color images is the subject of the first report.    In the system 

developed,  the red,  green, and blue sensor signals are converted to the 

conventional YIQ luminance and chrominance signals, which in turn are 

individually transformed in 16 x 16 pixel blocks.    Efficient quantization 

algorithms have been developed which enable coding with as few as 2.0 

to 3.0 bits/pixel.    Color reproductions of the coded images are included 

in the report. 

The next report is concerned with the development of adaptive 

quantization techniques for transform domain coefficients.    Techniques 

have been found which permit a reduction of about 0.2 to 0.-1 bits/pixel 

above that possible with conventional non-adaptive quantization methods. 

A study has been performed on optimal means of quantizing 

Fou.-ier transform coefficients for image coding.    It has been found,  that 

for coa^     quantization,  it is more efficient to quantize the magnitude/ 

phase representation than the real/imaginary representation.    The results 

of this work have been applied to Fourier transform coded frame differ- 

ences for a real time television system. 

Transform coders provide a relatively high degree of compression- 

picture quality performance, but their implementation complexity is 

somewhat greater than other types of coders.    A research effort has been 

initiated to study a system in which pixels are transform coded along scan 

lines,  and coded between scan lines by a differential pulse code modulation 



(DPCM) technique.    The process offers the potential of nearly as efficient 

coding as a two dimensional transform coder, but with much less 

complexity. 

In the following report consideration has been given to a new 

technique of DPCM image coding in which time adjacent frames are 

differenced, and the difference signal is coded by contour tracing.    Pre- 

liminary results indicate that the performance of the system will surpass 

that of conventional frame-to-frame coders whi h simply quantize the 

frame differences. 

Contour tracing is also of interest in facsimile coding of binary 

(blac'- or white) images.    A theoretical study has been performed to 

establish performance bounds for systems which code the contours of 

facsimile images.    The results indicate that contour coding is superior 

to conventional run length coding for imagery such as script and weather 

maps, but does not perform as well for typewritten documents containing 

many contours. 

The final report involves one of the first practical applications of 

universal coding to video data.    A computer simulation has been performed 

to evaluate a particular class of information preserving universal codes. 

It was found that coding can be performed at a rate below the average 

entropy of pictures,  by taking advantage of the local statistical structure 

of the images. 

3. 1   Slant Transform Color Image Coding 

Wen-Hsiung Chen and William K.   Pratt 

The slant transform has been applied quite successfully to obtain 

a bandwidth reduction and tolerance to channel errors for monochrome 

images [l].    Studies indicate that the spatial redundancy of color images 

and the limitations of human color vision can be exploited by slant trans- 

form coding to achieve a bandwidth reduction for color image transmission 

[2]. 
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SI   nt Transformation     A separable,  unitary transformation of an 

image array f(j,k) into an array of transform coefficients F(u,v) may be 

defined by the matrix equation 

[F(u,V)]   =   [A][f(j,k)][A]T 

where [A]  is a matrix whose rows are basis vectors of the transformation. 

A desireable property for image coding is that the transform compact the 

image energy into as few of the transform domain samples as possible. 

The energy compaction of a unitary transformation will be "high" if the 

basis vector "resemble" typical lines of an image.    In most natural 

images a large number of lines or line segments are of nearly constant 

brightness.   Also, many lines and line segments either increase or 

decrease in brightness over their length in a nearly linear fashion.    With 

this rationale, a family of basis vectors containing a constant and a 

sawtooth basis vector has been developed for image coding.    The remaining 

basib vectors have been chosen so that the sequency (number of zero 

crossings) of each basis vector is equal to its row number minus one. 

Also, by design,  the resulting set of basis vectors possesses a fast compu- 

tational algorithm. 

Figure 1 contains a block diagram of the slant transform color 

image coding system.   In the system the color image is represented by 

three source tristimulus signals R(j,k), G(j,k),  B(j,k) that specify the 

red, gi^^n, and blue content of a pixel at coordinate (j,k), according to 

the National Television System Commission (NTSC) receiver phosphor 

primary system.    The source tristimulus signals are then converted to 

a new three dimensional space Y(j,k), I(j,k), Q(j,k) which specify the 

luminance and the chrominance information of the image pixel according 

to the NTSC television transmission primary system.    The conversion is 

defined by 

■ 6- 

  



l^-r«« 

oc 
UJ 
Q 
O 
O 

L _L t 
CÖQ: cßa: CÖQ: 

Lü — 
Q.UJ 

_Jl- _IH -JH 
Q.2 Ü-Z 0- 2 
2< 2< 5< 
<3 <3 < 3 
cno COO CO O 

< i 

> '> *> 
3 3 3 

"ii *— «^   n^- 

>■ i—• O u. u. u. 

2 ^ 5 
a: Q: (T 
o o O 
ü_ LL u. 

HC^ l-<o H2J 22 2Z 2 2 
<5 << << 
-Jü: ü: _iQ: 
(OK (oh- col- 

1 1             1 

•> Jtf Jt 
^ ■         ^ 1 ^ 

^_^ ^^> ^^ 
>- •—• o 

UJ       z 
b    o       ! 
2     I ^    a: 
Q       UJ 
a:     > 
O      2 
o    o o    o 

i 1 i ^—^* 
-^ Jtf 
• ""^^ ••■n ^ 
«ta^» ^MM* ^-^ 
Q: o OQ 

d ) d > <! > 

=.! ?! 
( ? 

._^ •—^ •■■* 
~,_^ *rt ,^-,• 

<(£ <o <0Q 

Ul      2 

5    2 
Ul      2      <{? co    -    a: 
o:    9    ^ 
UJ    £    > >    2    2 
z    o    o =    o    o 

i ^4   ^4    ^1 
-^ -x: M 

gi «» 
■-'     % MMM - ■   i m 

^—' «ta^ ^-^ 
<>- <« <o 

h- K K 
2 2 2 

3i 35 35 
(0£ co a: COü: 
. o o o 
•JU. UlLi. Ul Li- 
2 co coco COCO 
F.2 ü:Z 012 UJ< Ul< UJ< 
^^ ^a: >Q: 
^h- ^h- 

1 

> > > 
r 

D 3 3 %^ ^■^ 

<i 
>- 

<U. <u.0 

Q: 
Ul 
o 
o 
o 
Ul 
Q 

I 
s 
V 

o 
I—I 
o 
o 

o 
m 
C 
a 

C 
rt 

f 
be 
rt 

A! 
o 
0 

t—I 

0) 

do 

Ml 



Y(j.k) 0.299 0.587 0.114 R(j,k) 

Kj.k) = 0. 596 -0.274 -0.322 G(j,k) 

Q(j.k) 0.211 -0.253 0.312 B(j,k) 

The reason for transform coding the Y1Q signals rather than the RGB 

signals is that YIQ signals are reasonably well uncorrelated and most of 

the color image energy is compacted into the Y plane. 

The converted signals then individually undergo a two dimensional 

slant transform ovjr the entire image, or repeatedly over subsections of 

the image, called blocks. This results in three transform domain planes 

Fv(u,v),  F{'i,v),  F-.(u,v) obtained from 

[s] [Y][si- 

rs] [iKs] 

[SHQKS] 

where [S]  is the slant transform matrix.    Next,  the transform samples 

are quantized with the number of quantum levels made proportional to the 

expected variance of each pixel, and with the quantization level spacing 

allowed to be variable to minimize the mean square quantization error. 

The quantized samples   F   (j»k),  F (j,k), and F   (j,k) are then coded and 

transmitted over a possibly noisy channel. At the receiver the channel 

output is decoded, and inverse slant transforms are taken to obtain 

[Y  ]   =    [S]1   [FY][S] 

Cl 3 ■ [s]T [Fj ][s] 

[Q ] - [sf rFQ][s] 

Finally,  an inverse coordinate conversion results in the reconstructed 

tristimulus signals 



R(j,k) 

G(j,k) 

B(j,k) 

1.000 0.956 0.621 

1.000 -0.272 -0.647 

1.000      -1.106        1.703 

Y(j,k) 

Itl.k) 
Q(j.k) 

Performance     A bana.vidth reduction is achieved with the slant 

transform color image coding system by restricting the number of code 

bits assigned to the quantized transform coefficients.    Efficient quantiza- 

tion strategies has been developed to minimize the me a»-, square quantiza- 

tion error for a given bit arsigmnent [3]. 

A computer simulation has been performed to subjectively evaluate 

the performance of the slant transform color image coding system. 

Figure 2 contains monochrome photographs of the red,  green, and blue 

components of an original image of 2 56 by 2 56 pixels.    Each component 

of the original is quantized to 2 55 levels.    It should be noted that visually, 

the R G B components are highly correlated.    The corresponding Y I Q 

components in Figure 2 appear much less correlated.    Figure 3 contaii.s 

photographs of the logarithm of the magnitude of each slant transform 

plane of the color image for transformation in 16 by 16 pixel blocks to 

illustrate the spatial energy compaction.    In one of the simulation experi- 

ments the transform coefficients, F   ,F ,F    were assigned code bits such 

that Y,I,Q were coded with an average of 1. 2,  0. 54 and 0. 26 bits/pixel, 

respectively.    The corresponding reproductions of Y,f,Q and  R,G,B are 

shown in Figure 3.    In this experiment the coding has been reduced from 

24 bits/pixel to 2.0 bits/pixel.    The RGB reconstructions exhibit some 

degradation as a result of the coding process, but the visual effect of the 

degradation is much less visible in the color reconstruction because of 

the spatial frequency limitations of the human visual system.    Figure 4 

contains color reproductions of two original color images and coded 

versions of the images coded with an average of 2.0 and 3.0 bits/pixel. 
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3.2   A Study of Transform Domain Quantization 

Clifford Reader 

The decorrelating effect of unitary transformations may be exploited 

for the transmission of picture,   if an effective -'eherne may be found for 

quantizing the samples in the traisform domain of the picture.    A study 

has been made of several techniques, aU but one of them adaptive in 

nature.    To implement the quantization schemes the data was first modelled 

statistically.    Much of the work performed has been concerned with fitting 

the data to the model and analysis of data which is not modelled well by 

the assumed statistics.    Results are presented to show the effectiveness 

of the schemes examined. 

The Quantization Process     The quantization process is the following 

sequence of operations:   The determination of a scheme to allocate a number 

of quantization levels (i.e. ,  a number of bits) to each transform domain 

sample,  the number being in accordance with the expected importance of 

that sample;   the determination of quantization and reconstruction levels 

having the same statistical Distribution as that of the data;   the scaling of 

the data according to its expected distribution in two-dimensional trans- 

form domain space,  such that the range of values of each samples falls 

within that of the quantization levels;  and finally,  the determination of the 

-13- 
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correct reconutrucMon level for each sample. 

The expected distribution of the data within the transform domain 

is obtained from modelling the data as a Markov process.    The implication 

is that energy within the domain is Compacted at the lower sequences. 

Figure I shows samples of bit allocation schemes with an average of 1. 5 

Mti/pixel.    It is to be noted that many samples are allocated zero bits and 

are not quantized at all.    The total error resulting from the quantization 

process may thus be considered to have two components:   the quantization 

error from the samples within the quantization zone and the error from 

discarding those samples outside the zone. 

The distribution of the quantization and reconstruction levels is 

modelled as Gaussian or Exponential.    The levels are evaluated according 

to the optimum scheme of Max [l]. 

Quantization Process Parameters 

Inter-element Correlations     The horizontal and vertical inter- 

element picture correlations are used to estimate the transform domain 

sample variances.    The variances are used twice in the quantization 

process.    First,  the number of quantization levels that are allocated to 

a sample is made proportional 10 its estimated variance.    Second,  the 

scaling of a sample prior to quantization is made proportional to its 

estimated variance. 

The number of bits allocated to a sample ranges from two to eight. 

The correlations may be used to adjust the spread of bits within the trans- 

form domain and also to distribute the bits to allow for any difference In 

horizontal and vertical correlation within the picture.    Figure la shows 

the bit allocation scheme for horizontal and vertical correlations of 0. 96, 

0,96.    Figure lb shows the effect of changing the vertical correlation to 

0.92. 

The scaling of the data before quantization is a compression of the 

dynamic range of the data designed to fit it to the quantization levels. 

i 
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FIGURE 3.2-1 Bit Allocation Schemes 
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The high sequency samples are boosted in amplitude and the low sequency 

samples may be attentuated by division by a constant multiplied by the 

sample standard deviation.    The constant is referred to as the amplitude 

parameter. 

Amplitude Parameter     This parameter is critical in the adaptation 

of data to the quantization process.    Within the transform domain the 

sample standard deviations are relied upon to compress or expand the 

range of the samples to the range of the quantization levels.    The ampli- 

tude parameter must ensure that the two ranges coincide and has been 

the subject of intensive study. 

Experimental Results     The performance of the scheme was 

examined with a range of values of the amplitude parameter to 

determine which parameter would yield the result with the minimum mean 

squared error and also which result was subjectively the best.    The 

picture was processed in blocks of 16x16 picture elements using the 

slant transform exponential quantization level distribution and for two 

sets of horizontal and vertical correlation:    0. 95; 0. 93 and 0.86,  0.86. 

The subjectively best results are shown in Figure 2.    The amplitude 

parameters for these results are 2.4 and 1.2.    Tests were also made 

using different transforms and different pictures.    For each case,  the 

optimum amplitude parameter could be found only by repeated experi- 

mentation.    It was felt that the scheme was of no practical use in this 

form and that it should be made to adapt itself for differing data and 

transforms. 

First the quantization process wa'  examined in greater detail. 

Ten of the 16 x 16 element blocks were selected from the picture such 

that all areas of the picture were represented.    These blocks were coded 

to determine which amplitude parameter yielded the minimum mean squared 

error for each block.    This was found to vary widely over the range two 

to fifty.    In an attempt to reduce this variation,  the amplitude parameter 
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was made dependent upon the magnitude of the largest a.c.  sample in 

the transform domain of the block being quantized (i. e.,  excluding the 

zero sequency or d. c.  sample).    This did not reduce the variation 

significantly.    The amplitude parameter was also made dependent upon 

the d.c.   term,  this also was unsuccessful.    Finally,  the parameter was 

made dependent upon the a.c.  energy in the domain (i.e.,  the sum of the 

squares of the values of the a.c.  samples).    This reduced the range of 

variation to one to nine.    Curves were plotted of the performance of the 

original sc     -nes and the a.c.  energy adaptive scheme (simply called 

hereafter the a.c.  scheme) for the ten blocks examined.    These results 

are shown in Figure 3.    Particularly significant is the relative flatness 

of the a.c.  scheme curves--the curves do not reach a minimum at the 

same point,  but do not deviate widely from the minimum over a relatively 

large range of amplitude parameters.    Also to be noted is that those curves 

in the non-adaptive scheme which do not reach a minimum for low values 

of the amplitude parameter are those with high mean squares error--the 

mean squared error scale is logarithmic and a small increment in one 

of the upper curves represents a large increase in error.    Those blocks 

with large mean squared error are of course those corresponding to high 

picture detail so it is important that they be quantized optimally.   An 

experiment was performed to determine the optimum amplitude parameter 

for the a.c.  scheme with all other parameters the same as for the non- 

adaptive scheme experiment.    Results are shown in Figure 4.     The most 

noticeable defect is that occurring on diagonal edges the appearance of the 

rectangular transform basis vector waveforms.    Several blocks were 

selected containing diagonal edges and the process examined for those 

blocks in comparison with blocks containing high and low detail informa- 

tion.    As expected the transform domains of the high detail blocks contain 

many high energy high sequency samples while the reverse is true for low 

detail blocks.    For the diagonal edge blocks,  there are only a few high 

The amplitude parameters for these results are 0.3 and 0.2. 
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.00005 

.OPTIMUM    PARAMETER 
FOR  CODING   THE 
ENTIRE   PICTURE 

3 4 5 6 7 
AMPLITUDE    PARAMETER 

(a)   non-adaptive scheme 

.00005 
0.1      02      03      04      05       06      07      OB     0.9      10 

AMPLITUDE     PARAMETER 

i 

i 

(b)   adaptive scheme 

Figure 3. 2-3.   Mean squared error curves for ten picture blocks 
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energy samples concentrated mainly along the axes leading away from 

the zero sequency term.    The rest of the domain contains a relatively 

uniform spread of low energy samples.    In some cases only the two first 

sequency terms have high energy and in other cases one axis predominates 

over the other.    Thus the construction of a diagonal edge is seen to be 

from a few samples detailing the direction «.r the edge plus many samples 

defining the precise edge.    Thia distribution is not modelled well by the 

assumed statistics and furthermore the a.c.  scheme tends to err as it 

detects a quite high a.c.  energy within the domain and thus quantizes 

only the low sequency samples well, assuming the high sequency samples 

to be of relatively high energy.    In fact,  the high sequency samples must 

be treated in the same fashion as those in low detail blocks.    In order to 

understand more about the optimal quantization of the three classes of 

image blocks--high detail, low detail and diagonal edge--the effect of the 

bit allocation scheme and the sample standard deviation were studied in 

greater detail. 

For experiments performed up to this point,  the estimc.ted 

correlations, through the transform domain variances, determined both 

the bit allocation scheme and (together with the amplitude parameter) the 

scaling constants.    This model is logical for data which fit the assumed 

distributions but may be inappropriate for diagonal edge blocks and some 

high detail blocks.    An experiment was performed in which a picture was 

coded for fifteen different pairs of correlations.    The fifteen resultant 

bit allocation schemes were tested separately with each of the fifteen 

resultant data scaling schemes.    Analysis so far performed confirms that 

all low detail image blocks and many high detail image blocks are optimally 

coded using bit allocations and scaling constants derived from the same 

correlations and furthermore that (for the picture examineü> the horizontal 

and vertical correlations were the same.    Diagonal edge blocks and other 

high detail blocks required very different correlations.    For example, 

many blocks were optimally coded using scaling constants determined by 

21. 



horizontal and vertical correlations of 0. 96 and 0. 92 with bit allocations 

determined by correlations of 0.84 and 0.80.    Figure 5a shows the result 

of coding a picture with the optimum bit allocations and scaling constants. 

Thea.c.  energy scheme was used with an amplitude parameter of 0. 3, 

all other parameters being the same as for previous results. 

Finally,  experiments were performed to examine the effect of 

threshold sampling significant samples in the transform domain which 

were not included in the quantization zone.    The a.c.  energy scheme was 

used for quantization within the zone using an amplitude parameter of 0.3, 

correlations of 0. 95,  0. 93 and the slant transform.    Figure 5b shows 

the result when a threshold of 0.05 was set.    A total of 2140 samples 

exceed this threshold and were allocated four bits each.    Including a 

minimum of four bits to describe the position of threshold samples, the 

bit rate for the picture is 1.72 bits per pixel. 

Conclusion     The effectiveness of various quantization schemes has 

been examined.    Results have indicated that for the purposes of coding, a 

picture may be considered to be composed of three classes of area. 

Optimal codings for those areas have been found.    Work is continuing to 

determine a satisfactory implementation.    Future work will consist of a 

comparative study of the threshold sampling scheme and a scheme to match 

the number of bits allocated to an image block with the detail contained 

within that block. 

Reference 

1.     Max,  J. ,   "Quantizing for Minimum Distortion, " IRE Transactions 
on Information Theory, March 1960,  pp.   7-12. 
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3.3   Adaptive Intra- and Inter-Frame Image Coding Utilizing Fourier 

Techniques 

Andrew G.  Tescher 

In this section preliminary results are given for a research 

program involving the following tasks associated with the development of 

Fourier transform image coding techniques;    I) the relative importance 

of amplitude and phase quantization;  2) modeling of frame-to-frame 

coding in the transform domain;  3) demonstration of a coding example 

for the intra-frame case.    In many applications,  the observation is often 

made that amplitude errors in the frequency domain arc less significant 

than phase distortions [1-3],    In order to provide an analytic basis for 

this observation, let the image g(x,y) and its Fourier transform G(u,v) 

be defined as 

00 

G(u,v)   =    ^{g(x,y)}   =    /Tg(x,y) exp {-2TTj(ux+vy)}dxdy 

-00 

Generally G(u,v) is complex-valued and can be expressed in terms of its 

real and imaginarv parts as well as a complex phasor 

G(u,v)   =   G_{u,v) + jG (u,v) =    |G(u,v)| exp{ j<i.(u,v)} 
R 1 

where 

4   ■   tan"1 (Gj/G^ 

In the following,  the quantization of |G| and ^ are investigated. 

Phase Quantization    The phase is assumed to be uniformly 

distributed in [-n ,TT ].    The optimum quantization strategy will accordingly 

utilize a uniform quantizer for the range [-n,n].     Then the relative mean 

square quantization error is found to be 
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where the symbol   £    indicates ensemble averaging. 

Amplitude Quantization    It has been observed, and can be argued 

on the basis of the Central Limit Theorem,  that G    and G   should have 

Gaussian distributions.    As a consequence,   |G|   will be Rayleigh distri- 

buted. 

In order to minimize the quantization errors,  the following 

procedure has been adopted.    The amplitude is mapped into a new random 

variable such that the transformed values are uniformly distributed, and 

can,  therefore, be quantized uniformly.    The quantized values are then 

mapped back into the original domain utilizing the inverse of the original 

mapping. 

It is desirable to obtain quantitative values for the m.s.e. 

dependent on the number of quantization levels.    Unfortunately,  this 

problem cannot be solved in closed form and,  therefore, numerical 

techniques must be employed.    The appropriate m.s.e.  values for both 

amplitude and phase are given in Table 1 for n = 2j levels where J ■ 0,1, 

2,3,4, 5.    Note that in all cases the amplitude is less sensitive to 

quantization errors than the phase.    The contrast between the two types 

quantization errors is most noticeable for coarse quantization.    In fact, 

simply replacing the amplitude by its average value results only in 21. 5% 

error.    However, a four level quantizer is required for the phase to 

maintain the same appropriate level of error. 

Frame-to-Frame Codfng in the Frequency Domain    In this section, 

consideration is given to the effects in the frequency domain of frame-to- 

frame image changes.    Consider the following case of frame-to-frame 

change.    Let g3(x,y) represent a sub-block in frame A which is shifted a 

distance,  a,  in the horizontal direction during the time that frame B is 
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TABLE 1 

The relative mean-squared error caused 
by phase and amplitude quantization 

n PHASE AMPLITUDE 

I 2 .215 

2 .73 .042 

4 .2 .025 

8 .05 .011 

16 .013 .0048 

32 .0031 .0020 

generated.    Let g.(xtv) represent the unchanging background.    The 

altered parts of the background are represented by g2(x,y) and g4(x,y) as 

shown in Figure 1.    In frame A,  g2(x,y) is part of the frame while g4{x,y) 

is covered by g   (x, y).    The roles of g2(x,y) and g4(x,y) are interchanged 

in frame B.    Equivalently, one may write 

gA= g^g^gs 

gB =   gl+83(X +a,y) +g4 

(1) 

(2) 

Here,  g    and g     represent frames A and B.    Note that the argument (x, y) 
A B 

has been dropped to simplify the notation.    Although eqs.   (1) and (2) repre- 

sent a rather simple type of inter-frame image variation,  the analysis 

covers many realistic situations. 

In terms of the previously developed notation,  the frame-to-frame 

change is given in the following simpler form.    First the following addi- 

tional definitions are made. 

g, =   g->+g: (3) 

gb=   g3(x+a)+g4 

i 
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(a)    frame A 

(b)    frame B 

Figure 3. 3-1.    Geometry of frame movements. 
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Equations (5) and (6) clearly indicate that for the model under discussion 

each frame can be decomposed into a varying part and one that remains 

unaltered between consecutive frames. 

The following conventional definition is used for the Fourier trans 

form 

Gs(u,v)   =   Gg =   J gs(x,y) exp { -2TTJ{UX + vy)}dxdy (7) 

io   " 

I Gs  |  exp { j ^s } 

tan"1[GSR/GSI] 

GSR+JGSI (8) 

(9) 

Equations (5) and (6) can directly be transformed yielding equations (10) 

and (11) 

(10) GA  ■   G   +G 
A la 

G
B

= VGb du 

In order to show how frame-to-frame variations appear it. the 

frequency domain simultaneous graphical representations of equations 

(10) and (11) are given in Figure 3.    The following assumptions have been 

made:    I) g-.g    and g    have "similar" Fourier decompositions, and 

2) the region over which g    is defined is larger than the similarly 

specified regions for g    and g   .    These assumptions imply that g  ,g 

and g    have approximately the same power spectral density except for 

different scale factors. 

Clearly,  small amplitude and phase changes are implied between 

frames A and B in Figure 2a.    Using the graphical representation,  the 

maxima of phase and amplitude can similarly be demonstrated as shown 

in Figures 2b and 2c.    The following inequalities can be obtained 
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A B 

Figure 3. 3-2.    Vector representation of inter-frame changes. 
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Ml -  IK-<U > 

AG    - 

B' 

|oAi - 10.1 

tan -I   GB 
tan 

i    G -1      a 

>LiGai + iGbij 

(12) 

(13) 

It is anticipated that the inter-frame coder will update the appro- 

priate amplitude and phase values.    The optimization of the updating 

procedure is greatly helped by the inequalities of equations  (12) and (13). 

One may substitute reasonable values into equations  (12) and (13) 

to obtain quantitative bounds on the update values.    In particular, let 

|G. I  =  |G   I  =  |G   |.    Allowing for similar power spectral densities for 

changing and unchanging image segments,  this is tne case where only 

one half of the image if.  'maltered.    Yet,  ^he maximum phase change 

cannot exceed the TT/2 which is still a foi r-fold reduction on the phase 

range as compared to single images. 

If only a 10% image area change is allowed,  then under the same 

assumptions as before,  the maximum phase range may not exceed TT/15 

which is a thirty-fold reduction on the phase values.    Unlike the uniform 

distribution of the phase in single images, the phase changes should have 

a peaked distribution,  which in fact should allow additional bandwidth 

reduction.    Utilizing equation (13) similar analysis can be performed for 

amplitude changes as well. 

A Coding Example for the Intra-Frame Case    In the previous 

discussion,  the importance of phase over amplitude in the frequency 

domain has been demonstrated.    If the amplitude can be estimated, based 

on the particular image to be coded,  various different adaptive schemes 

can be developed to minimize the required bandwidth for the image trans- 

mission.    Here, a particularly simple,  yet rather successful,  scheme is 

presented. 

The original 256 x 256, 8 bit per picture element "girl, " Figure 3a, 
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was Fourier transformed.    The amplitude and phase values were individually 

quantized.    The number of the quantum levels were fixed in advance.    This 

number was not, however, a constant.    Its value was highest in the low- 

spatial frequency region and decreased for increasing spatial frequencies. 

In all cases,  the phase was quantized to two bits more than the amplitude. 

The phase was uniformly quantized and the amplitude quantization 

utilized the procedure described earlier.    The parameter T  in the Rayleigh 

distribution was determined adaptively utilizing the three previously 

quantized amplitude values.    The receiver, if no channel errors are 

introduced,  can also calculate T and reconstruct the frequency domain. 

The final image is obtained by the application of the inverse Fourier 

transform.    The schematic representation of the quantizer is shown in 

Figure 4.    Note this quantizer can also be considered as one with 

memory.    The result of the coding experiment is shown in Figure 3b. 

The average number of bits per picture element is approximately 0. 75, 

which is better than a ten-fold bandwidth reductiou.    Additional improve- 

ments can be made by making the number as well as the location of the 

quantum levels adaptive.    This technique is currently being implemented 

for both intra- and inter-frame coders. 

References 

1. B.   L. McGlamery,   "Image Restoration Techniques Applied to 
Astronomical Photography, " in Astronomical Use of Television- 
Type Image Sensors, NASA Report SP-256, pp.   167-192,  Princeton 
University, May 1970. 

2. D.   Kermisch,  "Image Reconstruction from Phase Information Only, ' 
Journal of the Optical Society of America, Vol.  60,  pp.   15-17. 

3. H.  C. Andrews, A. G. Tescher,  R.   P.  Kruger,   "Image Proceesing 
by Digital Computer, "IEEE Spectrum, Vol.   9, pp.  20-32,   1972. 
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3.4   A Cascade of Unitary Transformations and DPCM Systems 

for Coding Pictorial Data 

Ali Habibi 

The search for efficient techniques of transmitting pictorial data 

over digital communication channels has led    various researchers to a 

common approach to the problem.     Briefly,   this approach entails 

processing the correlated data (images) to generate a set of uncorrelated, 

or as nearly uncorrelated as possible,  set of signals which in turn are 

quantized using a memoryless quantizer.    The quantized signal is then 

encoded using either fixed or variable length code words,  and is trans- 

mitted over a digital channel.    This is the general approach taken in 

designing differential pulse code modulators (DPCM) and the systems that 

use unitary transformation and block quantization, as well as many other 

systems developed in recent literature.    Both DPCM and transform coding 

techniques have been used with remarkable success in coding pictorial 

data.    A study of both these systems has indicated that each technique 

has some attractive characteristics and some limitations.    The transform 

coding systems achieve superior coding performance at lower bit rates; 

they distribute the coding degradation in a manner less objectionable to 

a human viewer,  show less sensitivity to data statistics (picture-to-picture 

variation), and are less vulnerable to channel noise.    On the other hand, 

DPCM systems, when designed to take advantage of spatial correlations 

of the data, achieve a better coding performance at a higher bit rate. 

The equipment complexity and the delay due to the coding operation is 

minimal.    Perhaps the most desirable characteristic of this system is 

the ease of design and the speed of the operation that has made it possible 

for DPCM systems to be used in coding television signals in real time. 

The limitations of this system are the sensitivity of well-designed DPCM 

systems to picture statistics and the propagation of the channel error on 

the transmitted picture. 

A hybrid coding system that combines the attractive features of 
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both transform coding and the DPCM systems is being studied.    This 

system e\ploits the correlation of the data in the horizontal direction by 

taking a one dimensional transform of each line of the picture,  then it 

operates on each column of the transformed data using a one-element 

predictor DPCM system.    The unitary transformation involved is a one- 

dimensional transformation of individual lines of the pictorial data.    Thus 

the equipment complexity and the number of computational operations is 

considerably less than what is involved in a two-dimensional transforma- 

tion.    Simulated results indicate good coding capabilities of the system 

The system is particularly attractive in the sense that the principle can be 

expanded to utilize interframe coding of television signals.    Such a coding 

system would start by taking a two-dimensional transformation of each 

frame of the television signal then it would code the transformed signal in 

the temporal direction by a number of parallel DPCM encoders thus 

exploiting the correlation of data in spatial as well as temporal directions. 

DPCM Coding of Transformed Data     In the system proposed here 

the pictorial data is scanned to form N lines then each line is sampled at 

a Nyquist rate.    This sampled image is then divided into arrays of M by 

N picture elements u(x, y) where x and y index the rows and the columns 

in each individual array such that the number of samples in a line of image 

is an integer multiple of M.    One dimensional unitary transformation of the 

data and its inverse are modeled by the set of equations 

M 
u (y)   ■    E   u(x,y)cp (x) i = 1.2,...,M 

x = l 7 = 1,2,. . .,N 

M 
u(x,y)   =    E u. (y)cp. (x) 

i = l    I        1 

(1) 

(2) 

where cp.fr) is a set of M orthonormal basis vectors.    The correlation of 

the transformed samples u.(y) and u.(y+T) is given by 
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M M 

C (T)   ■   ZE   R(x.x.y,y+T)cp.{x)cp.(x) 
x = lx = l l        J 

(3) 

where R(x,x,y,y) is the spatial autocovariance of the data. 

Note *that this equation indicates that the correlation of samples in 

each column of the transformed array is directly proportional to the 

correlation of sampled image in vertical direction, and also that the 

correlation of samples in various columns of the transformed array is 

different.    Thus, a number of different DPCM systems should be used to 

encode each column of the transformed data.    The block diagram of the 

proposed system is shown in Fig.   I.    A replica of the original image 

u   (x,y) is formed by inverse transforming the coded samples,   i.e.. 

u   (x,y)    ■    E   v.(y)cp. (x) n < M 
i = l     i i 

(4) 

The mean square value of coding error, assuming that the quantizati on 

noise in the ith DPCM systems is uncorrelated with u. (y),   is given by [l] 

2       I   " 2 n 

£    =   -Z    K(m.)e.    +   R{0,0,0,0)-   E    C.(0) 
x-1 1=1 

(5) 

where e.   is the variance of the differential signal in ith DPCM system 

and K(m.) is the quantization error of a variate with a unity variance. 

From published results  [2"!, [3] 

C.(0) - C. (1) (6) 

and K(m.) is approximated by an exponential function 

K(m.)   =   bexpf-am.} (7) 

for constant values for a,b.    Substituting Eq.   (7) into Eq.   (5) and 
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minimizing £    with a constraint M   =   £   m. the bit assignment is given 

by 

M n 
b     l r i    2 1 r i    21 m. -     +  —     In e. -   —   L*    In e. 

i          n          aL         i ni = l l-j (8) 

Figure 2 shows the coding error versus the bit rate for a third order 

Markov field with 

R(x,x,y,y)    =   exp { -cr |x-x |  - 8 |v-y |} (9) 

using Karhunen-Loeve, Hadamard, and Fourier transformations and 

DPCM systems with a one-element predictor. 

The system proposed here has been simulated on a digital computer 

with a block size N = 256 and M ■ 16.    The original and coded pictures are 

shown on Figure 3 using a Hadamard transformation.    Preliminary results 

show that the system achieves good coding capabilities and is worthy of 

further studies. 
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3. 5   Coding Television by Contour Tracing the Interframe 

Differential Signals 

Ali Habibi 

The search for efficient ways of transmitting television pictures 

over digital communication circuits has been along two general approaches. 

One approach is to use the spatial correlation in a single frame of a picture 

to reduce the number of binary digits essential to transmit its information 

content within some level of degradation.    This approach has led to 

techniques that manage to remove all or most of the redundancy in the 

spatial domain.    The other approach is to use the correlation of picture 

elements in the successive frames of television signals and use this factor 

in reducing the bit rate essential to transmit the new information in each 

frame.    This method for moving pictures performs better than the other 

techniques,  but it has the disadvantage of ignoring the intraframe correla- 

tion. 

A system for taking advantage of both interframe and intraframe 

correlations,  thus resulting in a further reduction in the bit rate than is 

possible using either one of the schemes, entails application of a contour 

tracing algorithm to the differential picture created by taking the frame- 

to-frame differences.    Besides a further reduction in the bit rate,  this 

technique will produce better encoded pictures than either the contour 

tracing or the conditional frame replenishment techniques since it 

eliminates the granular noise on the background without effecting the 

quality of the encoded picture significantly. 

Description of the Encoding System     The concept of tracing con- 

tours of constant gray levels in a single frame is attoctive since in a 

given digital picture many of the point« in one region have the same gray 

level.    Thus if a contour could be traced around these points,  which are 

all the same gray level, then only the addressing information that would 

enable the receiver to trace a similar contour along with the common level 

of elements in the contour is needed in the receiver.    Naturally the scheme 
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is more useful where «-.he possible number of gray levels is small or there 

is a high probability of having a large number of points at the same gray 

level.    Wilkins and Wintz introduced a two-dimensional contour tracing 

algorithm that locates and traces contours enclosing a maximum number 

of points of the same gray level [1,2].    The algorithm consists of two 

subalgorithms, one for locating the initial point of a new contour (IP 

algorithm) and the otKer for tracing the contours after they are located 

(T algorithm).    The T algorithm ti-ces the outer boundary of the largest 

connected set of elements having the same value as the initial point, and 

always terminates back at the initial point.    The direction of travel on the 

T contour can be limited to 4 or 8 spatial directions to limit the directional 

information to 2 or 3 bits  respectively.    All elements enclosed by the 

contour and having the same value as the contour are neglected,  but can 

be reconstructed at the receiver.    The authors also developed an algorithm 

for reconstructing the original data from the system output, and coded a 

number of stiU pictures using the contour tracing algorithm.    If some 

contours,  say contours that consist of only single points, are deleted and 

are replaced by the gray level of the neighboring contours,  the algorithm 

will result in some degradation of the encoded data.    But at the same time 

this reduces the number of binary digits essential to reconstruct the data 

at the receiver.    In transmitting the addressing information various types 

of coding could be used for a further reduction in the bit rate. 

In a television signal only a small percentage of picture points 

change in successive frames.    Thus a typical frame differential picture 

will consist of a large gray area (after a shift in gray scale to eliminate 

the negative components),  some bright and dark spots along the moving 

edges, and also a number of scattered points in the background that are 

caused by granular noise.    A typical interframe differential picture is 

shown in Figures la and lb.    The bright and the dark spots in an inter- 

frame differential picture are concentrated around the moving edges, thus 

the contour tracing algorithm is ideal for encoding the interframe 
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differential picture.    The granular noise in the background is eliminated 

simply by ignoring very short contours.    This reduces the bit rate without 

degrading the encoded pictures significantly.    Further reduction in the bit 

rate can be realized by using some coding schemes such as the Huffman 

code to encode the addressing information. 

Implementation of the System and Experimental Results     The 

block diagram implementation of the proposed scheme is shown in Figure 

2.    The input signal is a television signal that is sampled at the Nyquist 

rate.    This signal is delayed one frame and is subtracted from the signal 

that corresponds to the succeeding frame.    The quantizer Q digitizes the 

interframe difference signal befrre it is processed by the contour tracer. 

The quantizer operates on a differential signal,  in analogy to a DPCM 

system.    A 4-bit nonuniform quantizer will produce 8-bit PCM signal 

quality.    This is also the optimum number of possible levels for the 

contour tracer.    The interframe differential picture is reconstructed in 

the receiver by the reconstructing algorithm.    The receiver also employs 

an analog frame memory to reconstruct the original picture.    In the system 

proposed here the differential signal is obtained by simply subtracting the 

incoming signal from the signal that corresponds to the preceding frams 

In analogy to the DPCM system the frame memory could be replaced by a 

predictor which would make a prediction of the present frame using one or 

more previous frames. 

The system shown in Figure 2 has been simulated on a digital 

computer and two frames of typical television signals separated by I/30th 

of a second have been processed.    The original of the second frame along 

with its reconstructed forms are shown in Figure 1c and Id.    Table 1 

summarizes the performance of the system proposed here.    The bit rate 

is obtained without using any coding technique on the transmitted values. 

A  50% reduction in the bit rate when the transmitted values are encoded 

optimally is expected.    This subject is under investigation.    Figure Id 

shows one frame of the encoded signal.    To make a meaningful evaluation 

i 
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TABLE 1 

Bit rate,  number of contours and the CPU time 
on 360/155 for encoding interframe pictures for 

various numbers of quantization levels 

Number of 
Quantization 

Levels 

Number 
of 

Contours 
Number of 
Bits/Pixel 

CPU Time 
for Tracing 
All Contours 

CPU Time for 
Reconstruction 

of Picture 

256 

8 

4 

18403 

5883 

1319 

5.99 

1.97 

0.71 

57 sec. 

40 sec. 

22 sec. 

34 sec. 

21 sec. 

11 sec. 

of the system the coding effects should be observed on a number of 

sequential frames that would indicate a typical and complete motion. 
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TR-EE70-17, School of Electrical Engineering, Purdue University, 
Lafayette, Indiana. 

3.6   Contour Tracing in Facsimile Processing 

Lloyd R.   Welch 

Pictures with a two level gray scale (black and white) can be 

specified by stating the level at each point.    However,  such a method 

requires a number of bits of information equal to the number of picture 

elements.   An alternative is to specify pairs of adjacent points with 
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opposite levels.    Run length coding is one such technique which codes the 

distance between successive horizontal changes.    Another alternative 

is contour tracing described below.    For some classes ol pictures this 

promises to require a considerably smaller amount of information than 

run length coding. 

Contour Tracing    For the puxposes of this discussion a picture is 

a function f(x, y) which takes on the values 0 and 1 in the rectangle 

0 < x < N,  0 < y < M.    The black region,  B,  is the set of (x, y) with f (x, y) 

= 1.    The discrete picture corresponding to f is an array of colored unit 

squares,   the square S(i,j) is the set of points (x,y) with i <x <x+l, 

y <y < j+1 and the color is black if Bns(i,j)has positive area.    The 

directed edges between squares are indicated by the self explanatory 

notation (i,j,Z) where Z ■ Up, Down,  Left,  Right.    Note that N+l will be 

a permissible value for i and j,  and it will be necessary to assume the 

exterior of the picture is white.    A boundary edge is an edge between a 

black square and a white square.    A direction is attached to such an edge 

so that the black square is on the left of the directed edge. 

The set of directed edges along with their end points form a 

directed graph.   A simple analysis shows that at each vertex the number 

of edges directed toward the vertex equals the number of edges directed 

away from the vertex.   A component of such a graph has a closed, 

complete directed path,  that is,  all the edges of the component can be 

arranged in a sequence with the terminal point of one coinciding with the 

initial of the next and the terminal point of the last coinciding with the 

initial point of the first.    Such a sequence will be called a contour.    The 

simpler contours trace the boundary of black regions counter clockwise 

and the boundary of white regions clockwise. 

Enumeration of the consecutive edges of a contour requires at 

most In 3 bits per edge.    For example,  consider the edge (i,j,U).    The 

next edge must be of the form (i. j+1, Z).    Furthermore,  Z cannot be D. 
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Therefore,  there are only three possibilities.    Similar analysis is valid 

for boundary edges of the form (i,j,D),   (i,j,R) or (i,j,L).    Thus one can 

envision the following method for describing boundary edges:   For each 

contour describe an initial edge (info = In (4NM)),  then describe the length, 

L, of the contour (info = entropy of length distribution) and finally describe 

the succession of edges (info = L In 3).    If we can assume there are 

relatively few contours, then the dominant part of the total information is 

In 3 times the total number,  E,  of the boundary edges.    This can be 

compared with run length coding as follows:   Let H be the entropy at the 

distribution of distance between consecutive vertical boundaries (horizontal 

transitions), and assume that ^ E of the boundary edges are vertical.    Then 

run length coding requires ^HE bits of information while contour tracing 

requires Cln (4NM) + Ein 3 bits.    If C << E and H < 2 In 3 the contour 

tracing method is superior. 

Potential Uses     The contour tracing method is useful whenever the 

number of edges per component is large.    If the picture is typewritten text, 

this condition will not be met.    However,  in handwritten material the 

connection of consecutive letters reduces the number of components and 

contour tracing may be of use.    In addition, handwriting offers further 

possibilities for information reduction.    The black regions are narrow- 

width curves and the edge tracings on the two sides are considerably 

similar except for direction along the path.    This may allow nearly a 

factor of two reduction. 

Further Research    The potential use of contour tracing of hand- 

written material suggests further investigation.    There are several aspects 

not treated in this report.    First,   there is the discretizing process for 

handwritten material.    How small must the pixel squares be relative to 

the line width for reasonable representation?   What should the decision 

criterion be for labeling a square black or white?   Second, there is the 

area of component and edge statistics.    Statistical regularities may 

further reduce the In 3 estimate.    Third,  there is the possibility ri using 
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the similarity of the two sides of a line for information reduction. 

Finally,  there is the problem of designing simple mechanisms for encoding 

and decoding contour tracing information to produce black and white 

pictures. 

3.7   An Application of Universal Coding to Video Data 

Lee D.  Davissoi 

In the last report a formulation of the universal coding problem 

was presented.    If a time and state discrete source is characterized 

probablistically up to an unknown parameter,  9,  or arbitrary dimension- 

ality, a universal code is one which results in the minimum possible 

coding redundancy (in an appropriate sense) over all possible values of 

9,  with the redundancy approaching zero for large enough code block 

sizes.    This report contains a discussion of:    (1) a simple model for video 

data; (2) universal coding considerations for this model;  and (3) some 

empirical results on some sample video data. 

A reasonably good approximation to the probability mass function 

of the line sample-to-sample quantized difference,   x = 0, ± I, ±Z,... is 

PH.! ■ Hf el-l 

i.e.,  double-exponential with parameter 9,  unknown and,  in most cases, 

slowly varying depending upon picture activity.    If one makes the further 

simplifying assumption that the differences are statistically independent, 

which has been found to be approximately so experimentally,  then the 

probability mass function of a block of N differences x    = (x.,. . . ,x   ) is 
  —N        1 N 

N 

N Z Kl 

\ 
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If 6  were known,  an optimal code could be designed with arbitrarily small 

code redundancy.    A block code has been found which is universal in the 

previously defined sense.    Essentially,  the idea is to transmit the sufficient 

statistic, 

N 

i = l      ' 

for 9  using a vanishingly small portion of the coded represenUtion as 

N -• <».    The additional information needed to reconstruct x     can be 
— N 

coded optimally because the probability of x     given the sufficient statistic 

is independent of 6. 

Another method of universal coding results by redesigning several 

subcode« for representative values of 9.    Call these values 9., i = l,2,...,M. 

Given a block of length N,  the subcoder with the shortest coded representa- 

tion is used as output to the channel with an additional log M bits to distinguish 

the subcoder.    If one permits M - » as N - »   in such a way that log (M/N) 

- 0,  so that a dense set of values 9. on [0, 1 ]   results,  the redundancy goes 

to zero for any actual fixed 9. 

Both universal coding techniques were applied to a 4096 pixel/line 

and 2400 line picture.    For the second method M = 5 codes were selected. 

One subcoder was a run length coder for values of 9  near zero, another 

subcoder was a straight PCM coder for values of 9  near one, and the three 

other subcoders were Huffman coders for intermediate values of 9.    The 

results are summarized below. 

Average Picture Entropy: 
First Universal Code at N = 64: 
Second Universal Code at N = 64: 

3.2 bits/pixel 
2.95 bits/pixel 
2.98 bits/pixel 

The value of N = 64 was the optimum value for both universal codes,  but 

variations up and down by a factor of two made little difference.    If N gets 

smaller than about 16,  though,  the "overhead" information reduces 

performance,  and if N gets larger than about 2 56,  the variations in 9 
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reduces performance.    The most important point to notice it that universal 

coding produces a 10% reduction below the average entropy,  the minimum 

achievable by any code of the usual type. 
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4.    Image Enhancement and Re«toration Project» 

Image enhancement techniques have two major purposes:   improve- 

ment in the visual quality of a picture to a human viewer;  and manipulation 

of a picture for more efficient processing and data extraction by a machine. 

Image restoration techniques seek to reconstruct or recreate an image to 

the form it would have had if it had not been degraded by some physical 

imaging system.    Both techniques are subjects of continuing study; results 

of this effort during the past six months are summarized below. 
« 

The first research task deals with practical methods for the correction 

of image sensor intensity nonlinearities for real time television systems. 

In many applications the brightness of an image will exhibit unwanted 

spatial variations resulting from electronic or optical deficiencies of the 

sensor.   It is possible to perform a posteriori correction of images from 

such sensors to linearize their intensity response.    Such processing not 

only improves the visual appearance of images, but assists in the detecta- 

bility of objects, and permits quantitative radiometric measurements to be 

made from the images. 

The next two reports discuss two approaches to image restoration 

in which a physical realizability constraint is placed upon the image 

reconstruction.    Light reflected or emitted from physical objects is 

obviously a positive quantity, and it is limited in value to some maximum 

level.    However, most restoration algorithm« do not take advantage of 

this physical fact, and as a result,  the reconstructions contain non- 

physical artifacts.    These two reports suggest two techniques for positive 

image restoration.    One method is b^sed upon techniques of constrained 

mathematical programming, and the  other involves a constrained decon- 

volution process.    The research has led to algorithms which «ill theoret- 

ically provide an optimum restoration.    Work is continuing to develop 

practical means of implementing the algorithms for large size Images. 

The three reports that follow are all directed toward a similar 

aspect of the image restoration problem:   the development of recursive 
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image restoration aigorithmt to avoid the computational problems 

associated with the ordinary methods of implementation on digital com- 

puters.    The first report is concerned with a multi-dimensional modelling 

approach to imagery, which, in many applications, permits the design of 

simple recursive restoration filters.    In the next two sections a discussion 

is given on the problems of non-stationarity and nonlinearity on the design 

of recursive image processors. 

In the next report a theoretical description is given of physical 

imaging systems which introduce image motion blur.    From the physical 

models developed it is possible to design restoration processors that avoid 

many of the problems typically associated with spatially variant imaging 

systems.    An example of restoration of photographs subjected to rotational 

blur is given in the last report. 

4. 1   Correction of Image Intensity Nonlinearities in Real Time 

Alexander A. Sawchuk 

In general, all imaging systems respond to incident illumination in 

a nonlinear fashion and are said to have photometric or radtometric diator- 

tion.    Denoting a point ("i^O In a two-dimensional coordinate system by 

the vector u, the imaging system has intensity nonlinearities at some 

particular point u    if the output at u    is not a linear function of the incident 
— o —o 

light at ■  .    To add another element of difficulty to the analysis, the 

relation between input and output may change its functional form with the 

position of the point u   .    This overall intensity nonlinearity in imaging 

systems may be variations in light transmission across the image plane 

due to the properties of the lenses and optical system components preceding 

the sensor (vignetting, for example) or nonlinearities in the sensor itself 

due to the scanning electronics and variations in image tube response. 

The objective of the correction techniques outlined here is to make the 

overall system produce an output which is a linear function of the incident 
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light and does not vary over the field of view.    The intent is to perform 

the correction in real time and to present a number of different possible 

correction concepts.    Imaging systems with memoryless point nonlinearities 

and lack of geometrical distortion of blurring are considered. 

Representing the input intensity by f{u  ,u   ) = f(u) and the output 

intensity  gfu^.u  ) = g(u) in the nonlinear system,  the system description 

is 

R(ul,u2)   =   R{f(u1.u2),u1,u2}   =   Ru     u   (f^.u.,)) 
1        £* 

(n 

where the arguments of R indicate tnat it may be a nonlinear function of 

f(u) and that the nonlinear function itself may change with position (u  , u  ) 
1       £ 

over the field. 

Perfect intensity correction is possible if the ideal Image ffu-.u ) 

can be obtained from knowledge of  g^.u  )atany point (u  , u  ).    This 

operation of producing the ideal Image estimate  f (u  ,u  ) is written 

Muj.iij)   =   R"   fgCu^u^.Uj.Uj)  =   R'1^   {g(u1.u2)       (2) 
1'   2 

I 
where R      is the inverse Intensity distortion operation.    Perfect correction 

is possible theoretically, but is a difficult problem if the correction must 

be done in real time. 

For the intensity nonlinearity R at some articular point u, 
uru2 

R may be expanded as a Taylor series in f(u) anu like powers of f(u) 

collected to obtain 

gM   =   *0(u) +   «jUOfCu) + a2(u)f2(u) + .  .  . (3) 

where the a., i:l,2 ...•, are coefficients which depend on position. 

One possible approximation is to simply truncate Eq.   (3) after a finite 

number of terms.    By a similar procedure, a Taylor series may also be 
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written for the inverse distortion of Eq.   (2) in the form 

f (u)    =   do(u) + d^gfu) + d2(u)g   (u) + (4) 

where the d ,   i = l,2, »,  be directly obtained from the a . 
1 i 

Correction Systems    A number of different possible intensity 

correction methods will be compared in terms of computational require- 

ments, system complexity,  ease of calibration, and other factors.    It is 

found that there are tradeoffs between systems with large storage,  greater 

computation,  and relatively easy calibration.    The correction system is 

usually placed between scanner and display,  and the overall system may 

include other corrections for geometrical distortion, magnification,  or 

frequency response.    The final link in imaging systems is often the human 

observer and care must be taken not to overdesign the fixed nonlinearity 

correction system past the observers' ability to use the corrected infor- 

mation.    The display or measurement input is a quantized level defined on 

a discrete matrix of points, and correction computations are assumed to 

be performed under digital computer control with additional digital or 

analog special-purpose hardware as may be required for the best imple- 

mentation.    A number of systems are proposed, although they represent 

only system concepts.    The best configuration may be a combination of 

elements from many designs. 

Table Lookup    The most general correction method is that used 

for R.nger and Mariner correction--a table lookup on nonlinear intensity 

mappings for each pixel in the field of view [2], [3].    Denoting the number 

of samples in the Uj coordinate by # f Uj] = n. and assuming a square 

image so that # { u,) = n, the total number of pixels is n2, or 218 for 
9 

n = 512 = 2   .    Assuming that the corrections for k input intensity levels 

are stored for each pixel and that each output level may take on one of 
m 2 ? 

2     values,  n  k words must be stored,   requiring n km total bits of 

storage for this eystem.    For a typical system with k = 64 input levels 

\ 
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and 2   = 64 output levels,  m = 6,  with 2     '2=2       required words and 

2     »2   •6 = 6'2       total bits to be stored.    The calibration procedure for 

this system is extremely tedious and unnecessary for a human observer. 

If very accurate calibrated measurements are to be made on a picture in 

real time this technique gives the best results.     In a simplified version 

of table lookup in which the same nonlinear correction is applied to each 

pixel,  only one word for each of the k levels is needed,  and km total bits 

in the system are required. 

Fixed Bias and Contrast    If the intensity distortion of each point 

does not vary over the field and the coefficients  a. and  d. in Eqs.   (3) and 

(4) are constants, a two term approximation of the sum in Eq.   (3) is 

probably adequate.    To the human observer, a variation in response over 

the field as described by non-constant a. 's and d. 's is much more noticeable 

than intensity nonlinearities at each point described by taking more terms 

in the series.    Taking a two term approximation of Eq.   (3) for  the constant 

coefficient case and solving for  f(u) gives 

Mu)  = 
g(u) 

al 
(5) 

1 

as the estimator of the corrected intensity  f(u).    This correction can be 

accomplished in real time using either digital or analog hardware, and 

only two coefficients need be stored. 

Varying Coefficients--Two Terms—Computed    Assuming a two 

term approximation as in the previous section,  but allowing the coefficients 

to vary with position u,  the correction method of Eq.   (5) can be used 

except that a   (u) and a, (u) must be available as a function of u over the 
o — 1 — — 

field of view.    Figure 1 shows a possible implementation where two 

coefficients are computed analytically from the scanning signals in real 

time by a digital, analog,  or hybrid system.    This system is well suited 

to real time computation because of its low storage requirements and easy 

calibration [ 1].    The a   (u) and a   (u) may be approximated by constant 
o — 1 — 
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coefficient polynomials in u. and u    of degree G. 

For applications involving a human observer, a second degree 

(G =2) polynomial approximation is sufficient, while for measurement 

purposes higher degree polynomials may be required.    Only the poly- 

nomial coefficients need be stored and in many cases,  even better 

approximations with a limited number of coefficients are possible by 

taking into account the usual peaked response in the center of the field [l]. 

Varying Coefficients--Two Terms--Stored    As an alten.ative to 

computing the corrections described above,  the corrections may be stored 

in a special purpose memory system and applied to each point in a two- 

term correction shown in Figure 2.    The memory can be implemented by 

programmable read-only memory (PROM) hardware, which can store as 

many as 2048 bits per chip.    For # [ u^ = #{ u.,]   = n, n2 memory words 

must be stored for a aju) and a^u),  or 2n words in all.    For 2m different 

possible correction levels,  there are 2mn2 required bits to be stored. 

For n = 2    and an upper limit of m = 6,  storage is required for 3 • 220 bits. 

For presently available memories with 2048 - 211 bits, a total of 3'29 = 

1536 memories is needed for full storage.    Further reduction to as few as 

6 PROM's is possible when the two-variable coefficients can be approxi- 

mated by a separable sum of polynomials Cl]. 

Storing Polynomial Terms     Instead of computing the polynomial 

terms, they may simply be stored as functions of u   and u    and read out to 

be summed, saving multiplication operations and simplifying the hardware. 

For an n^ 512 system, most of the correction can be implemented with 

12 PROM's, a considerable saving over some of the previous systems. 

Unfortunately, one of the polynomial terms requires half the total storage 

of the two-term varying coefficient system and is better left computed. 

Computing Times    Some idea of the required computing times can 

be obtained from the frame rate of the system.   Assume that r frames per 

second are displayed, and n    points per frame as before.    For the all- 

digital system in which every point in a two term correction is stored, at 
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2 
least 2rn    digital operations per second are required,  where the factor of 

2 arises as a minimum time for a digital addition and division/multiplication. 

If r = 30 frames per second and n = 512,   15.220or   « 1. 63 • 107 operations 

per second are needed--quite a few for even the fastest computers.    The 

two term computed method reduces storage at the expense of even more 

computing.    In this case,  2rn2 increases to 16 rn2 required digital opera- 

tions.    The stored polynomial terms method only doubles 2rn2 operations 

to 4rn    because some terms may be stored while others are computed. 

Significant improvements in these times are possible with parallel hard- 

ware and simultaneous correction of neighboring points,   taking into 

account the characteristics of the human observer. 
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4.2   Positive Restoration by Mathematical Programming 

Nelson D. A. Mascarenhas 

The utilization of the fact that pixels are nonnegative quantities can 

lead to improvement in the methods for restoring images.    This is the 

result of a better use of prior information in a statistical decision process. 

It is known that two dimensional filtering can be formulated as a 

one dimensional vector operation [l].    A convenient model is 

\ 

I   "   H* + * 
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where   ^ is a (m X 1) vector of observed values 

H is the (m X n) blur matrix 

x is a (n x 1) vector of original pixel values 

£ is the random (m xl) vector representing the noise process. 

Several techniques for estimating x based upon mathematical programming 

methods are now considered. 

Quadratic Programming     In many situations,  in addition to a lower 

bound on the pixel values,  one also knows an upper bound.    In this formula- 

tion of the restoration problem it is assumed that the vector  x is uniformly 

distributed in the n-dimensional region defined by 

/   <  x   <   u 

Also z is assumed to be a zero mean gaussian distributed vector 

with known covariance matrix V. 

Under the maximum a posteriori (MAP) estimation criterion (or 

the maximum likelihood, since p(x) is a constant in the interval) one looks 

for the vector x such that p(x jy) > p(x |y) for any x.    Using the fact that 

the logarithm is a monotonic increasing function, and also the gaussian 

assumption on the noise, it is equivalent to maximize the function 

log pfxl^)   ■   log p(x) ■ i(y - Hx)T V"1^- Hx) - log p^) 

Since p(x) is constant on the interval ^ < x < u,  the problem is reduced 

to minimizing the quadratic form 

*(£- Hx^v'^-Hx) 

under the linear constraints   /  < x < u.    It should be observed that this 

formulation gives the same result as a weighted least squares criterion 

under the same linear constraints.    The original estimation problem, 

therefore, has been transformed into a gaussian programming problem 
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under linear constraints for which there are very efficient computational 

algorithms.    One of these,  the Wolfe's algorithm,  is based on a modifica- 

tion of the Simplex method for linear programming [2], 

Linear Programming    Assume now that the noise components z. 

are independent and identically distributed according to an exponential 

distribution: 

p(z.)   =   i exp { - | z. |} 

Following steps analogous to the previous derivations,  it is easy to verify 

that in this case the function to be minimized is given by 

n 

Q(x)   -    E      |Y    - (Hx)  I 
i=l 

under the constraints _£< x <_"•    In this case the same result could have 

been obtained through the criterion of estimation of least sum of absolute 

deviations under linear constraints. 

This problem can be formulated in terms of linear programming 

[3].    That is one seeks 

such that 

and 

Mm L    (e.,  +   e ._) 
.   .      il i2 x     1=1 

(Hx).  - y.    -    (e.2 

€.,     <    0 
ll   — 

e.,   <   0 
i2 — 

'ii» 

As another possible criterion, suppose that the objective is to 

minimize the maximum absolute deviation in the regression model 
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(Chebyshev criterion).    Then one seeks 

Min   (Max | y.-(Hx). |) 
x i l l 

Under this assumption the problem again can be reduced to a linear 

programming formulation [3]  of determining 

such that 

Min (e) 
x 

e <   y. - (Hx) i  <   e 

Large Scale Mathematical Programming     In the case of image 

processing a very basic problem is found in the solution of these mathe- 

matical programming schemes.    This has to do with the extremely large 

dimensionality that can be involved when two dimensional data is converted 

into vector form.    Therefore,  research is underway to find feasible 

computational methods of large scale mathematical programming to deal 

with this problem. 

Other Areas of Investigation    Other possible areas for investiga- 

tion include:   a) the use of "soft" constraints [4] where the actual estimator 

is a linear convex combination of the constrained and unconstrained 

solutions;  b) the existence of constraints on linear combinations of pixels 

Ax  < t_ where A may not be full rank.    In this case the solution would 

involve the use of a matrix pseudo-inverse.    Research is needed on the 

most suitable computational methods to solve the problem. 
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4.3   Positive Restoration by Deconvolution 

Ronald S.  Hershel 

Generally,  linear methods are used to restore pictures degraded 

by diffraction and noise.    These models generally assume a stationary 

and linear representation of the picture formation process as given by 

i = s  0  o   +   n (1) 

i ■   sampled N x N image 

o  =   sampled NxN object 

s   =   sampled N XN point spread function 

n  ■   sampled N xN noise array 

An optimum deconvolution filter d can be found such that the estimated 

object o' where 

d@ n* = i - s 0   o* (2) 

is statistically most likely to have occurred.    Two major problems arise 

when using the restoring formula of Eq.   (2) for pictures which are highly 

degraded (i.e.,  s is broad compared to the Nyquist sampling interval). 

The first is the high sensitivity to image noise,   thereby requiring a 

conservative deconvolution filter d.    The  other is the appearance of 

unphysical solutions for o due to the analytic representation.    The severity 

of both effects can be lessened by applying more a priori information to 

the restoring algorithm. 

First one should realize that the formula of Eq.   (2) is based only 

on the second order statistics of o, which proves adequate when o is of 

. 
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low contrast ( | o   - 0 | is small compared to |o|).    Rut this condition is 

often violated in practice, and as a result in many cases one obtains the 

non-physical solution 

o* <   0 (3) 

To develop a more realistic statistical model for o which avoids negative 

intensities assume each object point to be the square of a Gaussian random 

variable.    With 
2 

V ai 

where the probability density of o. becomes 

p(o.)   «    oi     exp (-o./Zor)   with   a=  < o. > 

It should be noted that p(o.) becomes complex for o, <r 0.    The joint density 

for o with < a.a.>  = 0 i ^ j then becomes 

p(o)   =   n  p(o.) (4) 

and the solution to s (x) o = i which maximizes Eq.   (4) is found to be 

o* =   (s ® X)"1 (5) 

such that s (x) X > 0 where X is obtained by 

e =   |6(x)o    -i|   = minimum (6) 

\ 

Since there exists a unique mapping from X  to o in (5), a unique solution 

can always be found to (6) where in the presence of no noise tie error 

€ = 0. 

Of particular importance is the pseudo inverse properties of (5) 

which optimally interpolates and extrapolates o    to a higher dimensioned 

array M xM, M > N by defining s as an M X N array.    Hence "super 
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resolution" can be obtained which requires a finer   dampling than the 

Nyquist interval. 

Other models for o are being examined which yield the following 

representations 

o* =   exp (s 0 X) positive o < 0 

■   [ exp (s® X) + 1 ] " bounded o < 0 £ 1 

Numerical Methods     The nonlinear solution to (6) using formula 

(5) for large 2-D arrays requires sophisticated numerical techniques to 

keep calculation times reasonable.    Newton-Raphson type schemes which 

require an explicit representation of the derivative matrix a   = 3   e/dX dX 
4 U I    j 

are out of the question since a., requires N    words!   A conjugate gradient 

method using elementary operations on the solution obtained by equation 

(2) shows promise in providing rapid convergence with minimum computer 

time. 

4.4   Multidimensional Modelling for Fast Real Time Image Enhancement 

Anil K.  Jain 

A large percentage of real-world phenomena can be described 

adequately only by multidimensional processes described by partial 

difference equations.    One of the funu. mental problems that must be 

solved with such physical processes is the filtering of data that are known 

to be corrupted by noise due to both observation and modeling errors. 

Digital imat'e processing,  tumor detection, distribution of population, 

and weather prediction are just a few examples of multidimensional 

processes in which the filtering problem is of paramount importance. 

For one dimensional linear systems governed by ordinary difference or 

differential equations, application of the basic Kaiman-Bucy filtering 

method is a routine matter.    However,   the extension of this method to 
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multidimensional problems introduces many computational difficulties. 

These difficulties include the high dimension of discrete approximations 

for numerical computation and the instability of many of the associated 

numerical algorithms [1,2].    Another approach to recursive filtering of 

two-dimensional images corrupted by white Gaussian noise will be described 

here.    Special consideration is given to the nature of the tv n-dimensional 

data so that application of the standard results to large amounts of data is 

practically feasible.    In particular,  the unique features of the approach to 

this two-dimensional filtering technique are: 

(i)    A special model for two-dimensional filtering which gives 

an estimator very close to the optimal interpolator; 

(ii) Matrix-vector filtering equations which are easily decom- 

posed into recursive scalar equations. This amounts to a 

scalar filter for vector scanning of the image; 

(iii)    A model which allows fast implementation of the filter, 

thus making the method suitable for on-line image 

restoration; 

(iv)    An isotropic filter so that it is equally effective for all 

orientations of the image. 

The filter model is based on the notion of nearest neighbor inter- 

action of image pixels in the spatial domain.    The filtering problem is 

formulated as a "dual control" problem (or a quadratic variational 

problem) via the maximum likelihood function.    Although such problems 

(usually) lead to a two point boundary value problem,  a stable initial value 

solution is readily obtained together with a decomposed scalar filtering 

algorithm eliminating all matrix operations. 

The Model     By assuming a stationary autocorrelation function of 

the image,  i. e. , 

E[x        x J   -   R( |i|, |j|) n,m  n+i,m + j i» i#»» (1) 

X 
\ 
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a nearest neighbor model can be written as a second order Markov 

process given by 

\r- vuH+v'i+i.j
+Vi.j-i+Vi-i.j+0ui.j (2) 

where a^,  Q^,   oy  Qr4 are the regression coefficients,  u.. are white noise 

inputs and 62 is the mean square error [l].    In Figure la,   this model 

implies that the predicted value at A is directly correlated to the nearest 

four neighbors B.C.D and E.    Although simpler models as shown in 

Figures lb and |c could be used,   this model has the desired dimensionality 

reducing and Isotropie features as mentioned above.    Besides, for the case 

of non-stationary image restoration,  this model easily leads to an adaptive 

on-line algorithm without incurring excessive computational cost.    It is 

noteworthy that this model also represents several other physical phen- 

omena such as the two-dimensional random walk,  steady state diffusion, 

birth and death processes,  etc.    Finally, for a. >0 and i = I, 2, 3, 4 eq.   (2) 

belongs to a class of linear elliptic systems,  so that there are several 

other similar multidimensional models [l]  that can be used for image 

representation, and can be extended to interframe image processing [31. 

Two-Dimensional Filtering     If eq.   (2) is rearranged and written in 

ve.:tor form, and if x. is a (lXN) vector,  then for a NxM image. 

^i+l =   QV Xi-1+^i* i = l,....M (3) 

where Q is found to be a N xN tridiagonal,  symmetric Toeplitz matrix for 

stationary (or piecewise stationary) images.    For real images,  Q is a 

positive definite matrix with bounded eigenvalues.    Also,  the eigenmatrix 

of Q is completely independent of its tridiagonal parameters and depends 

only on its structure (which in turn depends on the nearest neighbors 

chosen).    Also,  the components of the eigenmatrix (say H),  can be related 

to the Fourier coefficients via a linear transformation S containing zeros 

4 
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Figure 4.4-1.    Various image model configurations. 
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and ones only (selection matrix),  so that the FFT algorithm can be used 

to determine H.    Now,  the observation vector can be written as 

yi =  x.+ n. , (4) 

where T\. is the additive Gaussian noise of known statistics.    From Eqs. 

(3) and (4) one can directly write the vector Kaiman filtering equations. 

Since Eq.   (3) is a second order equation,  the associated Riccati equation 

will be a 2N x2N matrix equation.    Moreover,  since Q is positive definite, 

the one step predictor and estimator equations are unstable.    Such diffi- 

culties are inherent in elliptic systems.    Thus,  it might seem that the 

nearest neighbors model adds stability problems to the already complex 

problem of large dimension.    However,  by formulating the maximum 

likelihood function,  the equations for the optimal interpolator (denoted by 

x. itself) are given by 

wher. 

x        -   Qx.- x.   ,+ cr   b v. ,.  , 
i+l i      i-l i+l 

V QTvi+i+wi+i + :L2 «VV« 
a 

ii 

Wi =   '"i+l ' 

(5) 

(6) 

(7) 

subject to the boundary conditions 

N+l WN + 1    =   0 ' (8) 

2 
a v 

1 ' 

2 

2   2 
l + b  a 

[Wl Tyo 

(9) 

(10) 

Equations (5) to (10) give a linear boundary value problem. This can be 

converted to a stable nonlinear initial value problem by a Riccati trans- 

formation giving NxN matrix equations (as compared to 2N x2N in Kaiman 
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filtering).    Since eqs.   (5) to (10) are linear one can write 

X.  -    r.v. + t w + s 
i 11      i   i •   i (H) 

Using Eq.   (11) in Eqs.   (!;• and (6) and rearranging terms one can also 

write 

x.  =   d.v. ,, +  t w       + a    , /1?\ 
i i  i+1       i   i+1    Ki ' ^^l 

where d. and t. are related to r. and t.  (in fact t.d.^).    It has been shown 

that r. and t. satisfy stable initial value Riccati equations and the matrices 

h^h, hUi,  etc., are diagonal.    Also,  the equations for s. and g. are equa- 

tions of one step predictor and   estimator respectively.    Since all the filter 

equations decouple under the transformation h,  only scalar operations need 

to be performed. 

One Step Interpolator and Real Time Considerations     In order to 

compute the optimal interpolator,  the entire transformed data y.  (i = l,...,M) 

has to be stored.    However,  experimentally it has been found that a one 

step interpolator,  requiring a one step delay buffer storage gives an 

estimate which is close to the optimal interpolator in terms of S/N ratio 

improvement (see Table 1 and Figures 2 and 3).    Figure 4 shows the block 

diagram structure for such an interpolator for an on-line operation.    The 

total number of computational operations required is of the order of 
2 2 4 

N  log2N (8N    for N = 256),  compared to on the order of N    computations 

required for direct application of Kaiman filtering results.    The scalar 

filter equations lend themselves to a certain degree of parallel computation, 

so that a parallel processor structure for the filter could be defined.    This 

is currently under investigation [4]. 

Extensions     Preliminary results of implementation the above 

algorithm on 256x2 56 images as shown (Figure 5) have indicated that 

image representation by elliptic models can be exploited to develop real 

time methods for: 
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TABLE 1 

Square 
Signal 

S 
Signal 

Ratio 

7/3 

6.8/3 

a N 
1-Step Interpolator 
Improvement in Db 

7.98 

7.08 

Optimal Interpolator 
Improvement in Db 

8. 94 

7. 57 

(i)    Adaptive image enhancement to account for nonstationary 

statistics of images; 

(ii)     Frame to frame (or multi-sensor) image restoration; 

and 

(iii)     Enhancement of images degraded by elliptic point spread 

functions and additive noise. 

These aspects are currently being studied. 
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(a)   original image (b)   original image corrupted 
by noise of variance 9 

(c)   one step interpolation (d)    optimal interpolation 
4 

Figure 4.4-2.    Filtering of the "S"   signal. 
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(a)   original image (b)   original image corrupted 
by noise of variance 9 

(c)   one step interpolation (d)   optimal interpolation 

Figure 4.4-3.    Filtering of the square signal. 
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4. 5   Nonstionary Recursive Image Restoration 

Nasser E.  Nahi and Touraj Assefi 

The role of Kaiman filtering in image restoration has now been 

established [l]-[6].    It has been shown that Kaiman filtering is a very 

suitable method of image restoration when used in conjunction with appro- 

priate dynamic models of the image processes.    Additional improvement 

in estimation performance seems possible if the information concerning 

the position of the scanner with respect to the picture boundary is directly 

utilized by the estimator.   A method to implement this idea follows. 

Let a horizontally scanned picture be decomposed into M vertical 

strips and let s(t) be the scanner output and s    (t) be the portion of the 
m 

output associated with mth strip.    Statistical properties of s    (t) have been 
m 

determined for all m,   1 £m < M,    It has been shown that if the original 

image has a stationary (two dimensional) statistical property,  the statistics 

of sm(t) are all identical except for 8M(t).    Each random process s    (t) has 

been modeled as in [l1 or [2] and corresponding Kaiman filters derived. 

In the implementation, as the scanner enters the mth strip at jth horizontal 

line,  the initial condition for the estimator is updated using the preceding 

estimate from the (m-l)s   strip and its covariance.    Consequently,  the 

main additional complsxity over previous methods is in the fact that it is 

necessary to store the estimates and their covariances associated with 

the preceding scan line (one horizontal line preceding the present scanner 

position).    This is only a slight added complexity.    At present this 

estimator is being implemented to verify the expected improvements 

especially in the vicinity of the edges of the picture. 
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4.6   Nonlinear Recursive Image Restoration 

Nasser E.  Nahi and Mohammed Jahanashahi 

A typical image in the absence of any distortion or noise consists 

of an object of interest within a background.    The object,  such as a human 

face,  usually contains detailed information which is essential  in the quality 

of the final enhanced image.    In addition to this detailed information 

content,  the object represents a shape defined by its boundary.    Generally, 

both the detailed information and boundary information may be character- 

ized by statistical measures such as the mean and autocorrelations. 

This is the only a priori knowledge available to the image restoration 

system. 

If one now attempts to represent the entire image (the object within 

a background) by first and second order moments,  the statistics oi the 

boundary will usually overwhelm the statistical information on the details 

of the object.    It is then expected that while the minimum mean square 

estimate of the object given a noisy observation provide good restoration 

of the object as an area within the image,  it does result in undesirable 
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blurring of the detail within the object.    This is clearly apparent in 

references [l] -[4] especially in Figure 8 of the latter reference. 

Consequently,  the estimate of the object should be composed of two 

estimates:    I) estimate of the object boundary, and 2) estimate of object 

detail. 

Let the output of the scanner be represented by S(t).    Furthermore, 

let   S(t) = A(t) U(t) where 

M 
U(t)   =    E   [u{t-a.) - u(t-b.)] 

j=0 i J 

with 

A(t) = gray level of the image at scanning time t, 

M = number of lines in the image, 

u(« ) = step function, 

a = start of the object in line j, 

b ■ end of the object in line j. 

The justification for choosing S(t) as above is due to the apriori knowledge 

that there exists an object of interest in the image and the problem is to 

determine the location of the object.    Sampling S(t) at intervals t = 0, 1,2, 

.. • , N, where N denotes the number of pixels in the entire image,  will 

result in S(k) = A(k)U{k).  k = 0, 1,. . . .N.    Now given the observation 

sequence Y (k) = S(k) + V(k), with V(k) as the observation noise,  one may 

estimate the unknown process A (k),  k = 0, 1,.. . . N, and a., b , j = 0. 1. 
J    j 

...,M,  based on maximum aposteriori probability criterion.    Let A(k) 

be inoependent of a. and b..    Assume A (k) is a zero mean Gaussian random 

process with ErA(i)A(j)] = P(i,j), and V(k) is a zero mean Gaussian white 

noise with ErV(i)V(j)] = o2A(i-j),  where A(.) denotes the Kronecker delta. 

A map estimate of A(k), a., b. is found to satisfy the following relationships: 

k-1 
A(k)   =   L(k,k)Y(k)+    L      L(k,m)[Y(m) - A(m)] , 

m=0 
(1) 

\ 
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where 

and 

L(k>m) 
P(k,m)U(m) 

o2+ P(kfk)U(k) 
(2) 

M 
Ü(m)   =     L   [u(m-a.) - u(m-b.)] 

j=0 J J 
(3) 

minimum 
k 
I 
m=0 

1*2 — Z     [A   (m) -2A(m)Y(m)]U(m) - 2Logef(a1,...,aM,b1,...,bM) 

a1,...,aM 

bi V 
(4) 

where f (• ) = joint density function.    It can be shown that A (k) for a. < k <r b., 
J J 

j = 0, 1,. . . ,M,  takes the same values as estimates of S(k) obtained by a 

Kaiman Filter as in [1], [2],    The next step is to develop an algorithm for 

computing a. and b. from relation (4) above.    It seems that, due to the 
J J 

nature of the minimization, it will be possible to develop simple procedures 

to accomplish this objective. A number of procedures are under considera- 

tion.    Once a. and b. are determined for j ■ 0, 1, . . . ,M,     one can obtain 
J J 

an estimate of the size of object boundary.    Furthermore,  values of A(k) 

should result in a high detail restoration. 
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4. 7   Space-Variant Image Motion with Different Geometrical 

Distortion Models 

Alexander A.  Sawchuk 

The problem of a posteriori image quality improvement is 

simplified when a particular system model of degradation can be assumed. 

Although incoherent optical systems are linear in intensity,  the blurring 

of each point of the object by the system generally varies with position so 

that a space-variant point-spread function (SVPSF) h{x, u) in the super- 

position integral 

Jtl£)   =   y*h(x,u)(?(u)du 
(1) 

must be assumed.    Here^(u) is the original object intensity function, ^(x) 

is the image intensity recorded by the system, and h{x,u) is the response 

as a function of image coordinates xMXj.x^ to a unit impulse at u = (u  ,u  ) 

in the object coordinates [11, [2].    The difference variables  x and u are     2 

used because the object and image may be measured in different coordinate 
systems. 

Space-variant point-spread functions often result from moving 

optical systems with geometrical distortions.    These distortions are fixed 

coordinate transformations,  so that distances,  locations and intensities 

measured in one system may not be preserved when measured in another. 

In the absence of motion,  the geometrical coordinate transformation c 

uniquely relates the location of a point x in one system to the location of 

its conjugate point in another system by the parametric equations 

Ul  =   C1(W 
U2 =   C2<W 

(2a) 

(2b) 

which may be expressed in vector form by 

u   =   c(x) (3) 

\ 
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The distortion is a memoryless one-to-one mapping between points and 

may be a nonlinear function.    With these properties,   the system (2) may 

be inverted and solved to produce 

c'V) (4) 

with corresponding parametric form.    Since these transformations are 

memoryless point mappings,  there is no smearing,  averaging or integra- 

tion due to the distortions alone. 

Depending on the nature of the physical process which produces the 

distortions, two different expressions for intensity functions which undergo 

distortion are obtained.    The first expression a rises from the imaging of 

diffuse planar objects (such as by aerial photographic systems) or from 

electronic or digitally computed distortions which simply manipulate point 

locations without energy conservation requirements (as in certain display 

devices). 

Distortions described by this first physical model occur in particular 

when the direction of observation by the recording imaging system is not 

perpendicular to the plane on which the object function intensity is plotted. 

For extended sources such as the object,  radiative intensity is denoted by 

a quantity called the radiance, which depends on how the object is illum- 

inated, how it reflects,  transmits and absorbs, and on the direction from 

which it is viewed [3].    To simplify this, an assumption for the first 

model is that the object function is self-radiating and taat it is a lambert, 

or perfectly diffusing surface.    The lambert surface has the same radiance 

as a function of location on the plane no matter what th- viewing direction, 

so that the only effect on the intensity as seen by the imaging system is a 

change in the geometrical shape and relative location of object points, 

without any measured intensity change.    The same physical model also 

holds for certain electronic or digital display or graphics devices which 

perform shape distortions without intensity changes.    Denoting an object 

intensity function in a rectilinear space  u = (u  , u  ) by    ^ (u  ,u  ),  the 
i      c. 12 
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distorted function   *J (x  ,x  ) plotted in the x coordinates is given by 

^(x^x^,)   -    ^[c1{x1,x2),  c2(x1,x2)]    =   ^(U^L^) (5) 

where one simply substitutes from (2) and equates the intensity levels at 

conjugate point locations. 

The second distortion model is appropriate when distortions arise 

from aberrations in optical systems which image parallel entrance and 

exit planes,  or when distortion is caused by nonlinearities in image 

sensors and related electronics for cert;.in scanned imaging systems. 

With this model,   eq.   (5) describing the distortion must be modified from 

a single point movement by adding a multiplicative Jacobian term 

Ic'üOl 
ax. 

ax. 

ax. 

ax. 

(6) 

giving 

^(x1,x2)   ■    Ic'Wl^Cc^Xj.x^,  c2(xlfx2)] 
(7) 

for the distorted image.    This expression is derived using a constant 

energy imaging model. 

With an object function moving in the field of view of the recording 

optical system during exposure, a.   equivalent linear SVPSF can be derived 

[l^i [5], [6],    A motion function uniqualy relating any point u in one frame 

to the location of its image point x  in the other frame is assumed known 

at any time instant in the exposure interval [0,T].    This mechanical 

description is written parametrically as 

Uj -  g1(x1,x2:t)   =  gjCxU) 

U2 =   S2<XrX2;t)   =   g2-' ^ 

(8a) 

(8b) 

's 
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and may be derived from the distortion properties of the system with 

knowledge of the relative movement.    Omitting the details,   the expressi on 

Jw 
u = g(x; T) ^(u) |j  (xjk^u^x)! 

 5~T     ds 

*8Z\1* U 
(9) 

t=k1(u1;x) = k
2(u2;x) 

is obtained for the system SVPSF assuming the energy conserving model. 

The various functions in (9) are the Jacobian J   (x; t) and the function 
g - 

t -   k^u^x) :s(u2;x) (10) 

obtained by inverting each motion function (8) to show the dependence of t 

on u for a fixed x.    Equation (10) specifies a path of integration followed in 

the u plane to obtain the image intensity at point x, and may be multiple- 

valued when the motion retraces or crosses its own path.    The denominator 

of the integrand in (9) is the speed of movement of an object point,  so that 

the amplitude of the response is inversely proportional to this quantity. 

The absolute value brackets in (9) are included to ensure that the PSF 

remains  >0 as required by the incoherent model.    For the lambert imaging 

model of distortion,  the overall expression is the same as (9) except that 

the Jacobian factor J   (x; t) is omitted from the numerator. 

It is possible to considerably simplify Eq.   (9) for special cases of 

moving imagery.    For line images or two dimensional images in which the 

blur occurs in a straight line along one spatial dimension, a one-dimensional 

model is useful [6].    A different simplification using either distortion model 

occurs when object and image planes are parallel and undergo a relative 

translation during exposure [4], [6],    The motion functions of Eq.   (8) 

become 

-84- 

^- _•  ■■ i   ■ *ma m im m^m^m 



Ul "   Xr ml(t)   "   gi<i;t) (Ha) 

u2 =   x2- m2(t)   =   g2(x;t) (Hb) 

and (9) reduces to a space-invariant operation.    Some photographs 

illustrating this process have been prejonted previously. 

It has also been shown previously that the motion functions 

describing certain types of aerial imaging take the form 

Ul  =   Cl(xi'X2) " rni^ (12a) 

U2 =   C2(X1'X2) ' rn2(t) (12b) 

where the c^ and c2 represent various types of distortion.    From this 

description an overall system SVPSF may be found,  and efficient tech- 

niques for image restoration follow immediately [11, [7],    These motion 

functions correspond to an integration operation followed by a geometrical 

distortion. 

Another kind of space-variant blurring occurs when the order of 

these operations is reversed.    Motion functions for this type of system 

take the form 

bi(uru2) = xr ml(t) (13a) 

b2(ul'U2)   =   X2" m2(t) (13b) 

where the b^u) represent distortion functions, and Figure 1 shows the 

overall system.    This model for motion blur describes the imaging by a 

distorting system onto a moving image plane, as in some types of photo- 

graphic recording and motion picture systems. 

It may be shown that the overall effect of the system is described 

by the space-variant operation 
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Figure 4.7-1.    Distortion - integration cascade. 
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fW  = 

v - x-m(T) ..-1    A|, ,-1,  .1   . 
(b     (v^b'     (v)| ds 

v a x-m(O) 

f - v 

1 = mi' <xr vi) 

=
 m21(x2" V2) 

(14) 

assuming the energy conservation model. 

If invertible coordinate transformation preceding and following an 

integration are allowed,  a general class of space-variant point-spread 

functions is obtained which includes the two previously described types. 

When motion functions for a moving system can be written in the form 

b2(uru2^   =  C2^XrX2^ ' m2^ 

(15a) 

(15b) 

then the overall space-variant operation h(xtu) may be decomposed into 

a cascade of space-invariant PSF's and geometrical distortions r2],[4]. 

This description is of significant value in the restoration of images 

degraded by space-variant operations Tl]. 
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4.8   Rotational Motion Degradation and Restoration 

Alexander A. Sawchuk 

An important example of space-variant motion degradation is the 

case of rotation between parallel object and image planes in an aerial 

system.    Assuming rotation at constant angular velocity m,  the motion 

functions 

u    -   x cos (Dt + x sin cut te ro,T];   u) > 0 da) 

u2 -   -x sin out + x cos uut (lb) 

describe a counter-clockwise rotation of the object coordinates (u  , u  ) 

with respect to the image coordinates (Xj.x^.    Setting the exposure time 

T equal to TT/3U),  rotation of the parallel planes proceeds through TT/3 

radians during exposure,  and space-variant point-spread functic ion 

«[tt, + u2 ] rjF' xi+x2 = W -2--u2/2^xiiui' 

h(x.u)    =   4 

0 , 

U2 ^  *?. 1 

elsewhere 

(2) 
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is obtained. The function is plotted in Figure 1 and shows how the response 

decreases inversely with object distance from the origin. The point spread 

function (PSF) is non-zero only on the paths of motion of the points in image 

space. 

If coordinate distortions can be found which make all object points 

follow the same path in the image plane,   then the restoration of this space- 

variant degradation is possible [l],[2].    Such distortions are the simple 

polar coordinate distortions 

r  cos G 
z z 

r  sin 6 
z z 

r  cos 6 
v v 

r  sin 9 
v v 

(3a) 

(3b) 

(3c) 

(3d) 

Equation (3) and the inverse distortions 

6    =   tan 

r    - 
z CXl+X2j 

1 

2 N! 

(4a) 

(4b) 

6    .   tan-V^, 
v v u. y 

2^   2^ 
CU1+U2; 

(4c) 

(4d) 

can be used to transform object,  image and any vertical rotation PSF's to 

space-invariant form.    The PSF of Eq.   (2) for the constant ID example 

transforms to 

hT(r,e - e ) 
I z       V 

s 

I 
o <• e   - e  <- u)T 

—     Z V — 
(5) 

0   , elsewhere 
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Figure 4.8-1.    SVPSF for constant velocity rotation. 
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where r - rz= rv since there is no blur in the radial direction.    This 

transformed PSF is just a uniform space-invariant motion blur in the 6 

direction.    The equation 

>'z(r'ez)   =   / 

e = e 
V       z e. (r.e ) 

UL) 
de (6) 

6   = 6   - uuT 
V       z 

expresses the blur where   o/   (• ) and   £   (. ) are transformed object and 

image functions.    The polar mapping is applied so the h (. ) is defined only 

for 0 < 0 < 2TT while   ^   (• ) and   O   (• ) have values for all 6    > 0,   G    > 0 
z V v z —    ' 

and arc periodic with ZTT. 

For more complicated cases in which 6(1) is a constant angular 

acceleration,  for example,  6(0 = t2.  then a rather involved expression for 

h(x, u) results although the decomposition method for describing the 

response still applies. 

Once the degradation is converted to space-invariant form,   the 

usual inverse filtering or statistical estimation techniques fl] may be 

used for restoration.    The overall system dimensionality is reduced by a 

factor of two and the space-invariant filter processing can be done on a 

line-by-line basis with filter coefficients which are functions only of the 

coordinate difference.    Following the restoration process, a reverse 

polar coordinate transformation is used to return to thr estimated object 

in the original rectangular coordinate system. 

The effects of rotational blur have been simulated using aerial 

object scenes.    Figures 2a and 3a show the effect of a constant velocity 

rotational blur of 3. 9° about the upper left hand corner of the object.    The 

blur which increases with distance from the center of rotation is quite 

noticeable.    Applying the polar coordinate decomposition of Eqs.   (3) to (4), 

the intermediate object -J   (z) shown in Figures 2b and 3b is obtained. 

In this case   ^ Jz) is just an image blurred by a linear smear in the 6 

direction.    An inverse filter using the fast Fourier transform is applied 
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to remove the blur, and the intermediate object     f   (v) is shown in 

Figure 2c and 3c.    A final reverse geometrical distortion produces the 

restored object shown in Figure 2d and 3d. 
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(a)   images blurred by 
rotational motion 

(b)   image after polar 
coordinate distortion 

(c)   restoration by space- 
invariant inverse filter 

(d)   restored image after 
inverse distortion 

Figure 4. 8-3.    Example of image motion blur restoration - river scene. 
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5.    Image Data Extraction Projects 

Image data extraction is a new name given to the collection of 

projects that are concerned with the detection of features within an image 

and methods of measuring these features.    Allied techniques of ima^e 

formatting,  such as automatic spatial registration and rectifijation, 

necessary as a precursor to image data extraction, are also included in 

this section. 

The first report describes a study of digital and optical techniques 

of texture discrimination.    Texture, as defined in this context,  is the local 

arrangement of pixel values that gives the appearance of a semi-repetitive 

pattern.    The digital techniques studied involve several spatial,  statistical 

measures of texture.    A coherent optical system which measures texture 

in terms of the spatial frequency spectrum of an image section has also 

been studied.    A successful application of both measures has been obtained 

in a particular application--the automated detection of coal miner's blar'. 

lung disease by texture diserünination of chest radiographs. 

The second project is an investig  tion of correlation techniques of 

image registration for pairs of images with unknown relative translation. 

Moet classical solutions to this problem are based upon the cross- 

correlation measure between the images     This technique has been extended 

by performing a preprocessing operation to improve the sensitivity of the 

cross-correlation measure.    This technique leads to an order of magnitude 

improvement in misregistration detection, and thus permits registration 

of independently noisy images. 

5.1   Image Textural Discrimination 

Richard P.  Kruger 

Rosenfeld and Troy [l] describe image texture ideally as the 

"repetitive arrangement of a unit pattern over a given area. "   They also 

state that in natural imagery it would be difficult to identify such unit 

\ 
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patterns or determine their repetitive arrangement. Therefore, the 

previous description should be used only as a guide in the analysis of 

natural imagery. 

Since the approach to textural feature extraction will of necessity 

be experimental,  some probable statistical indices will be explored.    With 

statistical analysis it is hoped that useful measures of the organization and 

arrangement of the textures in question will be derived without having to 

focus attention on the specific structural properties.    For instance,  these 

statistical measurements will not attempt to recognize or trace textural 

structures per se,  but merely compute quantitative impressions which will 

characterize them. 

Textural discrimination of images types will be attempted in both the 

spatial and spatial frequency domain.    The specific approach,  therefore, 

is to initially consider a two c'ass situation.    The task is to experimentally 

compute several textural features, and subsequently apply a feature 

selection and supervised statistical pattern recognition technique to obtain 

a two class classification. 

Data Management and Textural Feature Extraction from Digital 

Images     Initial prototype images consist of the manual selection of image 

fields from two or more known classes.    A monotonic transformation of 

gray levels is performed which will produce an image with 8 equally likely 

gray levels [2,3,4].    This preprocessing step is designed to negate the 

effect of additive and multiplicative constants introduced due to inconsis- 

tency in photographic and/or digitization of the original images by 

constraining all inputs to the feature extractor to be identical with respect 

to first order probability of gray level occurrences.    The textural feature 

extraction measures are all based on spatial gray level dependence 

matrices [5,6]  under the assumption that visual texture-context informa- 

tion in each Image is contained in the spatial relationship between image 

picture elements at several fixed distances and angular orientations. 

More specifically,  it shall be assumed that this texture-context information 

i 
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is adequately specified by the symmetric matrix of relative frequencies 

P(i.j) with which two neighboring pixels are separated by a distance (d) 

and an angle (a) for each (i,j) gray level pair in the space.    For this 

application, d is the number of image lines separating the two pixels of 

interest.    Therefore,  an 8 by 8 symmetric count matrix is formed for each 

selected prototype image and the count matrix is normalized to create a 

matrix of relative frequencies as a function of a and d.    The parameter 

set is given by: 

i ■ 0,1, . . . , 7 

j ■ 0,1,....7 

a = 0O. 45°,  90°,   135° 

d = 1, 3,  7,   11 

The following five textural measurements T   (a.d) k = 1... ., 5 are com- 

puted for each matrix 

7    7 
T   (a,d)   >    £ £    i.J p(i,j,a,d) 

i = 0j=0 

7    7 
..   .v2 T   (a,d)   ■   E E  (i-j)    p(i,j,a,d) 

i=0j=0 

7   7 
T3(a.d)   =   EE      P(i'j>a'2

di 
i=0j=0     i+(i-j) 

(1) 

(2) 

(3) 

7   7 

T   (a,d)   =   EE    p(i,j,a,d) log p(i,j,a,d) 
i=0j=0 

(4) 

7   7 
T   (a,d)   ■    E E     |i-j| p(i,j,a,d) 

1=0 j=0 
(5) 

N 

Tj is an autocorrelation measure designed to meausre image coarseness. 

T2 is a dissimilarity measure often called the moment of inertia.    T- 

measures the extent to which the same or similar gray leveU tend to be 
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neighbors.    T. is a conditional entropy measure and measures image 

homogeneity.    Tj. is another dissimilarity measure which is similar to 

T_.    A total of 80 textural measures are extracted from each prototype 

image with each textural feature a function of angle (a) and distance (d). 

The number of textural features was reduced from 80 to 60 by calculating 

the mean (M) variance (V) and range (R) at a given distance d for each of 

four angles (a).    These statiscics are defined as 

Mk(d)   ■    i    E    Tk(a.d) 
a = l 

(6) 

Rk(d)   =   max Tk(a,d) - min T   (a,d) a = 0O,45O, 90O,135O (7) 

- 2 
Vk(d)   -    -   E    (Tk(a,d) -Mk(d)) 

4   a^l *'* 
(8) 

Fourier Transform Domain Feature Extraction Using a Coherent 

Optical Approach:   The textural features extracted in the previous section 

were derived from digital spatial domain data.    The Fourier domain 

measures to be presented treat each of the prototype images as an entity, 

and as such, measure more global aspects of visual texture.    Figure 1 

describes in simplest form,  the Recognition Systems Inc.   ROSA-3 used 

to extract the spatial frequency measures of visual texture.    A helium- 

neon laser emits a light which passes through a collimating lens and then 

through the input film image.    The transmitted light from the film next 

passes through a positive thin lens which performs the Fourier transfor- 

mation.    The transformed image is then projected onto a detector and 

appropriate energy measurements are obtained. 

The Fourier transform equation is 

en     00 

F(u v)   =    r/f(x»y^exP {j2Tt(xu+yv)}dx dy (9) 

.00       .00 
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Figure 5. 1-1.    Optical feature extraction device. 

99- 

  

MMMMBriMril 



where f(x,y) is the illuminated film region and F(u, v) is the transform of 

that region. 

It is well known that high frequency information pertains to the 

amount of sharpness of edge information in an image.    A detector in the 

transform plane shown in Fig. 2 which has 32 annular rings and 32 angular 

wedges,  is used to obtain both the total contribution of 32 radial frequen- 

cies which would accurately reflect the amount of edge by the relative 

strength of th/» higher energy annulli,  as well as any angular dependencies 

in the prototype images.    A 20 wedge shaped band rejection filter in the 

detector serves as a read out path for the detector.    The spectral measure- 

ments were normalized to unit energy by dividing each measurement by 

the total energy in the transform which in this case was the sum of the 

energy in all the annular rings.    The normalized energies in the rings 

were then logarithmically transformed to create distributions which were 

more nearly Gaussian. 

Textural Feature Selection and Classification Approach:   Both sets 

of textural feature measurements will contain both redundancy and features 

which are of little value in separating the classes.    For a classifier to 

work successfully,  these features must be removed.    In addition,  the 

larger the set of measurements the classifier must deal with, the greater 

the numerical inaccuracy in computing discriminant functions will be. 

Thus, it is advantageous to make the feature space as low dimensional as 

possible, determining    hich of the original measurements contain the most 

useful information for the classifier. 

In order to select meaningful features, a measure of the value of 

a feature must be defined.    For a two class problem where the classifier 

assumes a Gaussian distribution of features, the "Divergence" [7]  is such 

a measure.    The divergence of a set of features is defined as 

(10) 
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Figure S 1-2.    Ring and wedge Fourier transform plane energy detector. 
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where S.— class 1, S--» class 2. 

If classes S, and S    are assumed multivariate Gaussian distributed, 

the R dimensional x vector is distributed 

I _ 

P(x/Sk)   = 
exp 1^ - ^ (x-Mk) [ §k J     (x-Mk) 

(2TT)R/2|[|J|* 
(12) 

k = 1,2 

where u    is a mean vector and [§, ]  is the covariance matrix for each class. 
k k 

The divergence distance is optimized over all linear transforms [T], of 

dimension N by R,  which implies Gaussian distributions in the transformed 

space as well.    Thus 

p(x/Sk[T]) ~ N(ük.   [§k ]) 

|^   =   [T]Mk[$k]   =   [Tl'Cf^CT] 

1,2 (13) 

Therefore,  the divergence measure becomes a function of the linear trans- 

formation and 

expressed as 

formation and will be denoted J(S   ,S   ,T).    The divergence can therefore be 

(14) 

where tr is the trace of the matrix. 

It would be desirable to find which set of features,  taken together, 

would be optimal.    However,  in practice this is not possible.    A compro- 

mise is to calculate the divergence of R features one at a time and then to 

choose N of those with the highest divergence value.    If Gaussian statistics 
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are assumed and if features are analyzed one at a time,   the divergence 

measure of the ith feature becomes 

JiS^S^i) «'-fk^v2')^"- M<2') 
**?>*& (15) 

\ 

u (k) (k) 
where o-.      and n.     are the variance and mean of feature i for class k and 

[T] is a IxR matrix tha: has one non-zero term of unity value at location 

(l,i).    In this manner ai. R dimensional pattern space is reduced to an N 

dimensional feature spa;e. 

For tne extracted features it is often discovered that textural 

feature measures for the several prototype classes exhibit a large v\ria- 

tion.    This seems to preclude a distribution free classification approach 

and has lad to a statistical approach.    Statistical classifiers make assump- 

tions about the underlying distributions of features.    The most common 

assumption made about feature statistics is that they are multivariate 

Gaussian.    If a classifier is desired which maximizes the likelihod of 

correct classification,  then the discriminant functions become 

gk(x)   ■   -^xT[cpk]_1x +xT[cpk]-V(k)T^M(k)Trcpk]-
1

M(k) 

+ in P(Sk) - i in (det [fu1| k = 1,2 (16) 

where cpk is the NXN covariance matrix of the feature distributions and 

P(Sk) is the a priori probability of a sample being from diagnostic class k. 

Automated Diagnosis of Abnormal Lung Fields from the Routine 

Chest Radiograph    The digital and optical textural measures described 

above have been applied to a problem of automatically detecting abnormal 

lung vascularity resulting from coal workers pneumoconeosis (black lung 

disease). 
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The features selected by the divergence measure for the digitally 

derived features were R4(3)f M3(l),  V4(3), M5(3), V5(3) and ^,.(1) in order 

of preference.    This yielded a feature vector length of N = 6.    A separate 

analysis on the optical features selected annular rings 5, 22,   7, and 14 in 

order of preference yielding a N =4 dimensional feature vector. 

Computer Classification Results     The computer diagnostic proce- 

dure consisted of a removing one sample from th«; data base,   training on 

ths remaining samples and resubmitting the withdrawn sample for reclassi- 

fication.    This is a fair test since the classifier does not "see" the with- 

drawn sample until it is asked to diagnostically assign it to a class.    A 

second mom severe test was also performed.    This test consisted of 

removing one-half of the data from each class and training on the remaining 

data.    The removed half was then submitted to the classifier for diagnosis. 

This was repeated twice so that all data was classified in a test situation. 

In many respects these two testing procedures are logical extremes.    In 

the first test only one sample is withdrawn and as such the test must be 

repeated 141 times for  the optical and 298 times for the digital data bases, 

respectively.    The second test is only repeated twice for each of the data 

bases.    The problem of manually detecting and grading simple pneumoco- 

nioses opacities for radiographs appears to be largely one of discrimination 

between normal pulmonary vascularity (lung markings) pattern and partial 

or complete obliteration of this normal tree like pattern by opacities of 

various sizes and profusions which themselves exhibit a more or less 

textural nature.    The data base consisted of 141 such delineated lung 

^ones from all six lung zones.    Figure 3 contains a photograph illustrating 

computer outlined lung zones. 

Data Management and Textural Feature Extraction from the Digital 
Irnages     it wa8 decided that visual diagnosis of simple pneumoconiosis 

lesions is often arrived at by inspecting the lung regions between the more 

visually prominent posterior ribs.    This seemed logical since it is in these 

inter-rib spaces that normal vascularity is least obstructed by visual 
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interference from more dense radiographic structures.    These posterior 

inter-rib spaces were therefore manually extracted in the following 

manner.    First a computer generated grid was superimposed upon each 

of the digitized images.    This grid allowed visual extraction of from 4 to 

10,   100 by 100 pixel squares from each inter-rib space.    These squares 

are delinated for the zonal film shown in Figure 4a.    A p(i,j) matrix was 

found for each inter-rib space.    Since there was 3 to 4 such spaces per 

lung zone, the complete digital data base consisted of textural measure- 

ments from 298 inter-rib spaces.    The optical data base consisted of the 

spectral measurements from an illuminated circular 2. 5 inch aperture i.n 

each of 141 lung zone films.    A typical aperture illuminated region is 

shown in Figure 4b, 

It was decided to consider each posterior inter-rib space as a 

separate input to the diagnostic classifier to create an automated classi- 

fication technique which would not be sensitive to any inter-rib space nor 

any specific lung zone and would constitute a local region for toxtural 

analysis. 

The normal-abnormal training diagnostic rate was computed to be 

95. 9%.    It should also be noted that the false positive rate 5.3% versus a 

false negative rate is only 3.6%.    This,  of course,  is the conservative 

medical diagnosis for a mass screening situation.    On a per film basis 

only 2 films in 95 were missed.    The one at a time removal test procedure 

yielded a normal-abnormal diagnostic rate of 95.2%.    On a per-film basis 

3 films were missed for a corresponding diagnostic rate of 96. 9%.    When 

the more severe second test was performed the normal-abnormal rate was 

92. 9%.    On a per-film basis this was 96.8%. 

One quite obvious conclusion is that the normal-abnormal diagnostic 

rate is quite stable,  using digitally derived textural features.    The two 

class transform domain results will now be presented.    A corresponding 

digital rate will be given for the 95 films common between the two film 

bases.    The normal-abnormal training diagnostic rate was 93.6%.    When 
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only films common between the digital and optical data bases are examined, 

the normal-abnormal diagnostic rate is 97% representing 3 misses in 95 

films.    The one at a time removal test procedure yielded the normal- 

abnormal rate of 90.8%.    When a common data base with digital data is 

compared,   5 films were missed for a diagnostic normal-abnormal rate of 

95%.    The more severe test procedure yielded the normal-abnormal 

diagnosKc rate of 88. 7%.    Using the data base of the digital measurements 

indicated 5 misses out of 95 for a normal-abnormal rate of 94.8%. 

Physician Diagnosis    Six radiologists were requested to diagnose 

the identical 141 lung regions submitted for automatic analysis.    Two of 

the six readers originally selected the films in this study.    As a group 

these six radiologists represent over 130 man years of radiological reading 

experience. 

The physicians used the entire P-A radiograph with appropriate 

rectangular lung zones within which they were to make their diagnosis 

labelled and numbered.    This allowed the readers to grade the films within 

an anatomical context. 

When all the 6 X 141 = 846 physician observations are averaged the 

normal-abnormal rate was 93.4%.    In summary,  the false positive rates 

for the six readers ranged from 95. 0% to 2. 9% with an average of 17. 5%. 

Correspondingly the false negative rate ranged from 1.0% to 6.9% with 

an average of 2. 6%.    The averaged physician rates showed no significant 

change when computed on the basis of the 95 films submitted for digital 

analysis. 

Conclusions     A study was undertaken to determine the feasibility 

of using textural measures for the possible automated mass diagnostic 

screening of pneumoconiosis radiographs.    Two distinct textural feature 

extraction methods involving digital and coherent optical approaches were 

undertaken.    The performance of the two automated diagnostic systems 

was determined and analogous results were obtained for diagnosis obtained 

from experienced radiologists asked to analyze the same films given to the 
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automated systtms. 

At the present Hme a study is underway to apply the previously 

described methods n the analysis of aerial photography.    Initial study will 

center about automatic discrimination between man-made and naturally 

occuring terrain types. 
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5.2   Correlation Techniques of Image Registration 

William K.  Pratt 

In many image processing applications it is necessary to form a 

pixel-by-pixel comparison of two images of the same object field obtained 

from different sensors,  or of two images of an object field taken from the 

same sensor at different times.    To form this comparison it is necessary 

to spatially register the images and thereby correct for relative transla- 

tional shifts, magnification differences, and rotational shifts,  as well as 

109- 



geometrica1. and intensify disiortions of each image.    Often it is possible 

to eliminate or minimize many of these sources of misregistration by 

proper static calibration and compensation of the image sensor;   in some 

applications misregistration detection and subsequent correction must be 

performed dynamically for each pair of images. 

Consideration is given here to the single problem of registering 

images subject to translational differences.    The results can be applied to 

the detection of rotational and magnification differences by increasing the 

dimensionality of the problem,   or by a proper transformation of coordinates 

(e.g. , a rotational shift is equivalent to a translational shift in polar 

coordinates). 

A classical technique for registering a pair of functions is to form 

a correlation measure between the functions and determine the location of 

the maximum correlation.    In applying this technique to two dimensions, 

let f  (j,k) and l-lj.k) represent two discrete images to be registered.    In 

its simplest form the correlation measure is defined as 

R(u.v) 

J      K 
E    Z f.Ü.kH  (j-u,k-v) 

j-1 k=l ' ^ 
~T7r 

L L   i (j,k) T E   f (j-u,k-v) 
j=ik=i      j     Lj=ik=i J 

TTT 

where (j, k) are indices in a J x K point window area,  W,  that is located 

within an MxN point search area, S.    Figure 1 illustrates the relationship 

between the search and window areas.    In general,  the correlation function 

R(u,v) must be computed for all (M-J + l)(N-K+l) possible translations of 

the window area within the search area to determine its maximum value 

and obtain a mixregistration estimate. 

There are two basic problems with this simple correlation measure. 

First,  the correlation function may be rather broad, making detection of 

the peak difficult.    It should be noted that the simple correlation measure 
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ignores the spatial  relationship of points within each image.    Second, 

image noise may mask the peak correlation.    Both problems can be 

alleviated by extending the correlation measure to consider the statistical 

properties of each image function  Mj.k) and  f   (j,k).    The statistical 

correlation measure is defined as 

Rs(u,v) 

J    K 
L   L    g1(j,k)g   (j-u,k-v) 
j=lk=l    1  

J    K 

j = lk-l 

1/2 M   N        2 

L   Z     g    (j-u,k-v) 
Lj = l k=l 

1/2 

where the g.(j.k) are obtained by spatially convolving the sampled images 

f.(j,k) with spatial filter functions  D.(j,k).    Thus, 

g^j.k)   ■   f.ü.k)   ©   D.ü.k) 

The spatial filter function is chosen to maximize the correlation peak ratio 

RS(6x'V 
'P       Rs(u:v) 

for all   u ^ 6 

for all   v M 

Determination of the optimum spatial filter function is facilitated by 

a vector space representation of each image.    Let the column vector Q 

represent the image function Mj.k) when the image is scanned in a vertical 

raster fashion.    Simiarly, let P        represent the column scanned image 
— u, v 

f  (j + u,k+v).    The elements of Q and P        will be high.y correlated spatially 
2 — —u,v 

sin   s f  (j.k) and f  (j,k) are each spatially correlated to a significant extent 
1 £ 

for natural imagery. The first step in the spatial filter design process is 

to decorrelate or "whiten" each image vector by whitening filter matrices 

H      and H   .    Thus,  let 

i 
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1 = ^Q)   9. 

B ■    (HJ      P 
— u,v        —P       —u,v 

where H    and H     are obtained bv a factorization of the image covariance 

matrices 

£Q =   ^Q ^Q 

Kp "   HpHp 

The simple correlation operation is now performed on the whitened vectors 

A  and B yielding the statistical correlation measure 

Rs(u,v) 

T 
AB 
—   —u. v 

rATAy/z(BT  B   ^ 
V—   —y       V —u,v —u,vy 

1/2 

which can be written as 

c TN-1    T 
K   j     Q   P 
—   y        —        U, V 

Rs(u,v) UTfWT^i^ZT 
where 

v 

S ■ «PSQ 

In thic formulation the statistical correlation measure is obtained by 

filtering one of the image vectors Q a single time with a filter matrix 

TN"
1 

a-CO 
and then evaluating the simple correlation measure between the filtered 

image and the other image for each potential misregistration. 
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In order to assess  the performance of the statistical correlation 

measure,  a computer simulation was performed to determine the 

misregistration of an image with itself.    In the simulation,  a window of 

16 x 16 pixels was employed in a 32 x32 pixel search area.    The image 

correlation matrix was assumed to be of Markov form with an adjacent 

pixel correlation,   p ,   ranging from 0 to 1.    In all cases the misregistration 

was detected.    Figure 2 contains a plot of the measured correlation function 

for a vertical shift of four pixels for several values of the parameter p. 

With p = 0,   the statistical correlation measure reduces to the simple 

correlation measure.    TL-  relatively small peak of the correlation function 

is apparent from the figure in this case.    As p  increases toward unity,  the 

correlation peak becomes more pronounced,  and permits detection of the 

misregistration with greater accuracy. 

The operational performance of the statistical correlation system 

can be justified by a heuristic argument:   If the images to be registered 

are each highly correlated, then they will each contain large areas of 

nearly constant brightness.    These large common areas will give a high 

correlation value for all amounts of misregistration,  and hence mask the 

true correlation peak.    By prefiltering the original images,  their edges 

will be enhanced with respect to the backgrounds.    Then,  the edges of the 

two images are correlated to obtain a more pronounced measure of the 

misregistration. 
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Figure 5.2-2.    Simulation results of correlation measure. 
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6.    Image Analysis Projects 

The image analysis projects are concerned with the background 

technology necessary to effectively design image coding, restoration and 

enhancement, and data extraction systems. Of particular interest is the 

development of quantitative measures of image fidelity and intelligibility. 

Other projects included in this classification are studies directed toward 

the characterization of images and image acquisition and display devices. 

In the first report further advances in the development of a geodesic 

color measure are discussed.    The color measure under consiae ration 

yields a quantitative metric of color distance between two colors with 

known luminances and chromaticity coordinates.    The present research 

effort has been directed toward the evaluation of the color measure as a 

means of accurate color difference. 

The next section describes the application of Fourier transform 

techniques for the performance analysis of an image scanner.    These 

techniques have been found useful in isolating noise and interference 

processes present in the scanner system.    Also,  the analysis gives an 

indication of methods that can be employed for restoration ard enhance- 

ment. 

The final report represents a preliminary discussion of a technique 

of representing ;.mages and other forms of two dimensional fields.    This 

representation offers promise of a significant dimensionality reduction 

that can be exploited for image coding and restoration processes. 

6. 1   Color Measures in Verification of Schrodingers Theory of 

Color Vision 

A.   K.  Jain 

In many situations such as scene analysis, color image restoration, 

image evaluation, etc. , where a visual model for color preception or color 

discrimination is utilized,  the role of a color difference measure becomes 
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very important.    Recently,  some efforts have been made to compare 

various color difference formulas on the basis of their relative agreements 

with observed data.    Results of these comparisons indicate that the FMC1 

(Friele-MacAdam-Chickering No.   I) formula is superior to the other 

formulas recommended by the CIE.    This section presents a discussion of 

this formula in verification of Schrodinger's concept [1,2]  in the theory 

of color vision.    The success of this verification could be taken as an 

indication of the performance of the FMCI formula. 

Geodesies and Schrodingers' Criterion    Given two colors with 

coordinates x. andx.+ dx., i = 1,2,3 the FMCI formula describes the 
i ii 

color difference metric as 

fds2] 
3      3 

i=l j=l 
C.. dx. dx. 

ij      i      J 
(1) 

where x.,  i = l,2,3 are linearly related to the X,Y,Z color coordinates 

and C.. are the sensitivity coefficients of average human perception of 

colors and depend on x., 1 = 1,2,3.    Using Eq.   (1) as the color difference 

metric,  the color difference between any two arbitrary colors (c    and c   ) 

is given by [4], 

min   f 
x.    J 

min   I      ds 
c.    J 

I       c, 

(2) 

\ 

In other words,  the color distance between the colors c    and c    is equal 

to the distance measured according to Eq.   (.   , along the curves of least 

distance between these colors.      This   set of curves of least distance x.(t), 

(i = l,2,3,  t = parameter along the curves) is called the geodesic between 

c. and c   .    If (x,y,Y) and {x,y,Y) represent the chromaticity coordinates 

(x, y) and luminances (Y) of the colors c. and c    respectively,  then 

according to Schrodinger's theory,  the color c_ should appear equally as 

bright as c . if for fixed x,y,Y, x and y,  the luminance Y   is such that the 
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color distance between c. and c. is a minimum.    This means that for the 

fixed color c    and fixed chroma tic i ties (x,y) in the x,y, Y space,  Y is such 

that the geodesic between c    and c    has minimum color distance. 

Mathematically,  this implies 

s(x,y, Y; x,y, Y)   =      min    { s(x, y, Y; x, y, or)} (3) 
o^ 

•«> 

where    ty    is the set of all possible luminance values in the x,y, Y space. 

Figure la illustrates this meaning.    The broken lines   show   the various 

geodesies from c    to various colors on the constant chromaticity line 

through (x,y).    The solid line is the geodesic satisfying Eq.   (3).    This is 

also called the constant brightness geodesic.    Clearly, for any fixed c 

and any chromaticity value (x,y),  there is a unique constant brightness 

geodesic.    The loci of all these geodesies is called the constant brightness 

surface.    Based on Schrodingers1 theory described above, the following 

observations can be made: 

(a) Any two colors on a constant brightness geodesic are 

colors of equal brightness; 

(b) All constant brightness geodesies are horizontal at white 

(or any gray). 

The first observation can be justified by invoking Bellman's Principle of 

Optimality and the following conclusion can be made: 

Any two colors on the surface of constant brightness are 

colors of equal brightness (according to Schrodinger's 

criterion) and the geodesic connecting them is a constant 

brightness geodesic. 

This can be used to verify Schrodinger's theory via the FMC1 formula. 

The second observation can be justified by applying the Shcrodinger 

criterion to the color difference metric, and the fact that any color 
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Figure 6. 1-1.    Color geodesic r iagrams. 
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difference metric  (including FMC1) described by an equation such as  (1) 

shows that the equi-color distance infinitesimal ellipsoids with center on 

white or any gray are vertical with no tilt in the x, y, Y space (Figure lb). 

For details see [1 J.    The slope of the constant brightness geodesies at 

any other point depends on the tilt of the equi-color difference ellipsoid 

at that point. 

Implementation     Figure 2 shows the projection of the constant 

brightness geodesies (generated between the achromatic point Y  = 50 and 

the spectral colors) on the x.y plane.    These geodesies map the constant 

brightness surface,  and according to Schrodinger's criterion developed 

in the last section,  if a geodesic is generated between any two cross 

spectrum colors on this surface,  then their intersection points with the 

geodesies in Figure 2 should have the same luminance (Y) values.    Figure 3 

shows the cross spectrum geodesies with the intersecting constant bright- 

ness geodesies. 

Conclusions     Based on the results obtained in the study reported 

here it can be concluded that: 

(a) Schrodinger's criterion of constant brightness colors 

is valid; 

(b) FMC1 formula verifies this criterion uniformly, nearly 

everywhere within the color solid. 

There are a few intersection points which give rise to relatively 

high values of e.    These should be re-examined by generating constant 

brightness surfaces with higher accuracy of the Y values at the end points. 

It is possible to determine analytically the end conditions for the constant 

brightness geodesies, and these conditions should be used in solving 

eq.   (3) for more accurate results.    This aspect is being studied now and 

the results will be reported in the near future. 
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Figure 6. 1-2. Projection on the x, y plane of the constant brightness 
surface generated by FMC1 formula. Points marked A have Y = 45, 
points marked O have Y = 40. 
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Figure 6. 1-3.    Intersection points of the cross spectrum 
geodesies with the constant brightness geodesies of Figure 
3 in x, y plane. 
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6.2   Scanner Evaluation using the Fourier Domain 

Harry C. Andrews 

In late 1972, a magnetic tape of digitized images was supplied to 

USC IPI for purposes of providing the university community with "real 

world" data for picture processing purposes.    This section of this report 

presents some preliminary results utilizing the supplied images.    Figure 1 

presents the block diagram of the processing on three sections of the view 

of an aircraft.    The three images used are:   a) "Blurred wing section": 

b) "Center fuselage section", and; c) "Entire Aircraft".    The processing 

implemented is described in each box and the circled numbers refer to 

the particular photographic image in Figures 2 - 4.    The experiments 

implemented were selected to demonstrate a scanner evaluation capability, 

and were not necessarily optimized for a specific restoration or enhance- 

ment objective.    The labeling,  scaling,  clipping,  etc.,  routines are 

standard preprocessing procedures often utilized for imagery work. 

Figure 2 presents the results of the processing on the "Blurred Wing 

Section".    The original image presented in Figure 2a appears to contain 

some scanner synchronization artifacts.    In the processing sequence the 

original is framed,  selectively clipped (for removal of background noise). 

\ 
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labeled 0001 and presented in Figure 2b.    The Fourier transform and 

various l^w pass versions of the "Blurred Wing Section" illustrate high 

frequency noise removal.    Figure 3 shows the results of the processing 

concentrating on the "Center fuselage section" with noise clipping in this 

case, providing a higher contrast image.    Again,  the Fourier and a low 

pass image are present.    Figure 4 shows the three images associated with 

the "Entire Aircraft" scene.    Here noise clipping removes the interference 

in the scanner to a certain extent. 

The Fourier domain of all three images demonstrate two interesting 

phenomena concerning the device used for scanning.    First,  there is quite 

a bit of image energy along the horizontal axis in the Fourier domain. 

There are only three means by which such energy can consistently fall on 

axis in the Fourier plane.    One way for energy on either the vertical or 

horizontal axis to occur is from actual imagery perfect aligned with the 

scanning device (highly doubtful).    A second way for the Fourier axis to 

have so much energy is for one of the borders of the image to be brighter 

than its opposite border.    Thus,   in the "Center fuselage section" the right 

and left borders of the window have different imagery present.    This 

accounts for the faint vertical line in picutre 1003.    Notice that such a 

line is noticeably absent in picture 0004 and 2002 because right and left 

window borders in these images are essentially the same.    The same 

phenomena will occur for top and bottom window borders but is masked 

in these cases by all the high energy falling on the horizontal axis of the 

Fourier domain of all three images.    This axis is displaying energy 

exactly normal to the scan axis in the original image.    Because there is 

jitter on the sync signal for the start of each line of the scanner, artificial 

line shifts are introduced thereby introducing artificial edges which are 

perfectly aligned normal to the scanning axis.    Of course,  such artificial 

structure should be removed if possible by a selective filter in the Fourier 

domain. 

The second unanswered phenomena displayed by the Fourier images 

is the periodic faint horizontal stripes that occur along both horizontal and 
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vertical axes (stronger in the vertical for pictures 0004 and 1003).    This 

structure likely is due to some aperture effect a   sociated with the scanner 

since the stripes are aligned with the axes.    Posi;ibly bearing wobble or 

wear in the rotating mirrors of the scanner might account for this effect. 

Indeed the above two phenomena graphically demonstrate the power of the 

use of the Fourier domain for scanner evaluation. 

6.3   Picture Decomposition 

Ronald Hershel 

There is considerable utility in decomposing an N xM array p of 

picture elements into separable products of eigenvectors. Specifically, 

let the decomposition be given by 

R 
p     =      E    X. u. v. 

R i=1    i-i-i (1) 

where   v    and £. ar , eigenvectors of p p and pp   respectively.    For a 

complete representation of p a total of R £ M < N pairs of vectors are 

required in (1).    For many bandwidth-compression and restoration appli- 

cations,  it is interesting to attempt to reduce the number of separable 

products required to give an accurate but not exact representation of p. 

This type of representation is defined as 

L^R 

p,    =      2J       X.   U. V . 
L      .   ,       i -i —i 

i = l 

where the associated mean squared error is given by 

PR-PL 
E    x^ 

i=L+l     l 
(2) 

.   2. t 
Since { X. }   i-1,. . . , R are the eigenvalues of pp ,  and order in decreasing 

value,  then 
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^  2 ,2 
Xj  >   X      > •  • >   XR   >0 

The procedure of selecting the first L separable products is optimum in a 

least squares sense.    Unlike other transform techniques,   the orthogonal 

set used for reconstruction is matched to the particular picture at hand. 

Hence,  bandwidth compression must take into account the number of bits 

required for   u.   and v .  in Eq.   (2). 
— i — i 

However, for certain applications in frame to frame coding only 

the relative magnitude X. of the components need be calculated each frame 

where updating of u. and  v. is required only when correlation develops; 

i. e. ,   u. p v. ^ 0 for i t j. 

In restoring pictures with significant x-y symmetry,  the decom- 

position technique proves extremely powerful both in discriminating 

unsymmetries (including noise) and in reducing computation times for 

both linear and nonlinear deconvolution.    For separable degradation 

matrices,  the imaging equation for object A and image B becomes 

S A S    =   B (4) 

If 

B =    E    b 
i=l 

x. y . 
i — i — i 

then eq.   (4) reduces to finding the pseudo inverse A*,  which must be 

expressed as a separable product 

A* =    E    b 
i=l 

x • y. 
i—i—i 

where  S   x.  -u.     S   y    =   v i=l.L x —i     —i       y-i-i      —i 

and hence it is possible to solve for x. and y    to reconstruct A 
— i —i 
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Numerical Methods     Obviously the major shortcoming of this 

technique is having to solve the eigenvalues and eigenvectors of large 

matrices since the number of computations for this task grow as N3. 

However,  since only a relatively few number of components (in particular 

the largest eigenvalues) are of interest,  there are a number of iterative 

algorithms available to obtain approximate solutions.    One promising 

scheme, developed by Lunczos. uses the matrix P as an operation on a 

random vector b  to obtain a sequence of vectors 

defined by 

P1.P2,...,£L. q^q^ qL 

P« =   4P    9      i- 2P      .+ P -n o-n-1      -i-n-l    i-n- 

q    =   P   P — n o —n 

By squaring the Fourier transform of each row of a matrix formed by the 

p vectors, a map of the eigenvalues is obtained from X2= 0 to X2= 1 (P is 

normalized by its largest eigenvalue to form P^.    This operation goes as 

LN    for general N xN matrices and considerably faster for sparse or 

highly redundant pictures. 

Since the resolution of the eigenvalue distribution is proportional 

to L,  sufficient separation of nearly degenerate eigenvalues may require 

more iterations.    However, noting that this distribution must be positive, 

restoration techniques can be employed to more accurately locate the 

eigenvalues of interest.    Once {X*}  i = l,2,. .. J < L  have been estimated 

the vectors  p. and q. can be simply transformed into the required 

estimates of the eigenvectors pairs (u., v.) associated with P.    Equation 

(6) suggests an adaptive scanning procedure for real images where a 

controlled slit transmission p.fr) scans P in the y direction to yield 

q^y) and then in the x direction to yield p.^x), hence considerably 

increasing S/N as well as providing nearly real time picture decomposition. 

131- 

\ 

■■ 



7.    Image Processing Support Projects 

The image processing support projects include hardware and 

software projects supportive of the image processing research effort. 

The first report discusses the development of a real time color 

image display terminal designed to be used for image reception over the 

ARPANET.    The basic display unit is capable of storing a 2 56x256 byte 

image received from the network, and presenting it for real time display 

on an industrial grade television monitor.    Extensions to the display will 

allow natural color and pseudocolor displays of up to 512 x 512 byte resolu- 

tion. 

The following report details progress on the image processing 

software systems.   At present, a library of digitized pictures is accessible 

over the network.    Also, mennbers of the research community may mail 

hard copy imagery to be digitized, and retrieve the digitized images over 

the network.    Work is progressing on making the VICAR image processing 

language available over the network. 

7. 1   Development of Real Time ARPANET Image Display 

John E.  Tahl 

An inexpensive digital image display/printer/scanner for use on 

the ARPANET is presently under development.    This device has been 

separated into two basic units:    the display and the printer/scanner.   At 

present the display section has been designed and is in the process of 

fabrication.    After a working display has been produced,  on approximately 

July 1,   1973,  the development of the high resolution printer/scanner 

section will be undertaken. 

The display section will be a completely self-contained unit, 

including an input processing and decoding section, main display refresh 

memory,  output data processing section and color display monitor.    The 
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initial capability of the display will be as follows: 

1. Receive,  fron an ARPANET TIP, digital picture 

information, with brightness resolution of up to 64 levels 

(6 bits) and at input rates up to 19.2K baud. 

2. Store th,* received data in an array of up to 2 56 x 2 56 six 

bit picture values. 

3. Present the received and stored information at standard 

television rates,  to high speed output digital to analog 

converters, for application to the red,  green and blue 

inputs of a color monitor.    In this mode the image 

presentation will be shades of gray.    At a 19. 2K baud 

input rate, a complete 256x256 image can be received 

and displayed within approximately 18 seconds. 

4. In addition to the black and white display,   the input will 

have full pseudo coloring capability, using a high speed 

random access memory inserted between the output of 

the refresh memory and the digital to analog  converters. 

The random access memory will be able to be programmed 

by transmissions from the TIP or by local switch control. 

Over 4096 different color combinations of hue saturation 

and luminescence will be available for pseudo coloring. 

5. In addition to the black and white and pseudocolor,  the 

display unit will be capable of being programmed, by 

transmission from the TIP or by local switch control, 

for sequential full color  presentations.    In this mode, 

red, green or blue definition is assigned to each image 

and displayed in the corresponding color on the screen of 

the oisplay.    A triple exposure,  by a camera, photographing 

the sequential display of three primary color images, will 

produce a full color photograph.    The displayed image 

i 
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presentation will occupy only the center one half of 

the monitor,  to provide a pleasing presentation without 

a blocked appearance. 

The second phase of the development will use the storage capa- 

bility of the display refresh memory,  as a TIP buffer,  for the transmission 

and reception of high spatial resolution image information for the future 

scanner/printer section.    Figure 1 is a block diagram of the display 

portion of the digital image display/printer/scanner. 

7.2   USC/ARPANET Image Processing System 

James Pepin 

In the past six months software development has concentrated in 

three areas:   network telnet support,  file transfer support, and Vicar 

implementation.    This software is now readily accessible by a user from 

a remote network site. 

The first area to be discussed will be the  telnet server.    The 

purpose of the server is to allow a user at a remote site to log-in and 

use programs and devices present on the USC IPI system.    This service 

is implemented as a foreground partition in USCPS.    This foreground 

program can support six users in the present configuration.    This number 

can be increased by adding more core to the partition.    The types of 

programs that have been implemented in this monitor are a line editor 

remote job submission subsystem, a job printing subsystem, a Tektronix 

display program,  directory scanning routine,  and communication with the 

IBM 360/44 operator routine.    This   set of subsystems allow a remote 

ui'er to create,  submit and display the output of a program run on ÜM 44. 

This is the basic package.    It is implemented and working now.    In the 

next few months a user FTP text editor 360-44 console support and some 

other features will be added to the capabilities already mentioned. 

The server FTP has had extensive usage lately.    The Institue has 
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been digitizing and sending data to several network sites,  including 

Carnegie,  USC-ISI,  and UCSB.    The pictures transmitted have ranged in 

size from 65, 000 bytes to 256, 000 bytes.    Some disappointments have 

been experienced in data transfer rates, however.    The rates obtainable 

with TENEX systems have been in the 4kb range.    This is because of the 

need to transmit 8 bit  bytes in image mode.    This is one area of projected 

effort in the near future.    An attempt will be made to increase data rates 

up to at least 25kb/   This does not seem too impractical since that rate 

has been realized in communication with other 360 type machines.    Work 

to be done in the FTP area includes implementing of all the modes and 

types called for in the protocal and inclusion of the new mail capability. 

Also called for will be the permanent inclusion of the FTP server.    As it 

exists now,  FTP is only up on demand of a user a id for increased use it 

should be up regularly. 

The work done in the VICAR implementation area basically falls 

into two categories:   implementation of VICAR on the 360/44 and the inter- 

facing of it to the existing VICAR present already on the campus IBM 

370/155.    The implementation of VICAR under USCPS was not a great 

difficulty since VICAR,  as originally implemented by the Jet Propulsion 

Laboratory, was on a small 360/44.    The main thrust of the effort was in 

the smoothing out of the problems that the 370/155 system has solved. 

These problems included the efficient allocation of disk data sets on 

different physical devices to allow for minimization of disk arm contention. 

Another area of effort in the 44 VICAR project was to implement the device 

types allowed by the OSVICAR.   This results in the ability to run VICAR 

programs virtually unchanged on either computer.    This is useful for 

debugging,   since turnaround is significantly better on ihe 44 but the 155 

is faster and better suited for production work.    Our rext area of concern 

was the interface between the two VICAR processes.    The present effort is 

to make the machine the VICAR programs run "transparent to the user." 

In this configuration the VICAR language processor will scan the work 

requested for such items as programs needed,  core and CPU usage,  and 
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determine what tapes need to be copied,  then proceed to perform the job 

on the best CPU.    This is the major effort at the present time.    Preliminary 

results look very promising for such applications au running the VICAR 

language processor on the 44,   then perhaps collecting the necessary picture 

files,  sending them to a large machine on the net,  then returning the results. 

i 

137- 

^*m*mimmmtm 



8.    New Research Projects 

The following are summary descriptions of new research studies 

that will be initiated during the next six months in addition to the continu- 

ation of topics presented earlier: 

8. 1.    Generalized Spectrum Extrapolation 

William K.  Pratt 

In transform image coding systems one technique of achieving a 

bandwidth compression is to discard transform coefficients of actual 

or expected small value.    At the decoder an inverse transform is usually 

taken with zeros substituted for the discarded components.    A new tech- 

nique has been discovered for estimating the values of the discarded 

coefficients prior to the inverse transformation.    This technique offers 

the promise of increased resolution and decreased restoration error at 

no increase in channel bandwidth.    Studies will be performed to quanti- 

tatively evaluate the performance of this technique and to assess its 

implementation requirements. 

8. 2.    Facsimile Image Representation 

Lloyd R.   Welch 

The representation of two-level gray scale images by contour infor- 

mation is a promising technique for certain classes of images.    In particu- 

lar, handwritten text should be suitable for such representation.    The 

research divides naturally into two parts:    1)   the conversion of the physical 

image into an array of zeros and ones;   and 2)   analysis of the contour 

structure in the resulting array. 

The line width of handwritten material with a medium width mechanical 

pencil lead is about the same as the width of a pixel element of the Muir- 

head facsimile scanner.    Therefore,  the magnitude of a pixel sample 

will vary according to what fraction of the pixel region is covered by pen- 

cil lead (or ink).    To obtain a reasonable digital representation it will be 

necessary to do some data processing.    Possibly an interpolation algo- 
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rithm will be required to obtain a finer grid than the Muirhead scanner 

provides.    Then the algorithm for replacing pixel samples with zeros 

and ones may require more sophistication than   simply establishing a 

threshold. 

After this phase of research,  the contours will be investigated for 

structural and statistical regularities with a goal of data reduction. 

8. 3.    Space Variant Point Spread Function Inversion Through Singular 

Values Decomposition 

Harry C.  Andrews 

The commonly employed linear model for space variant imaging 

is 

g(x.y) >//h(x,y,t,9) tutn)*t*n 

The corresponding moael in discrete form is given by 

I ■   [H] I 

In most imaging situations the image matrix H possesses a relatively 

low number of degrees of freedom.    Advantage of this fact may be 

utilized to achieve a dimensionality reduction in describing the image 

model by use of a singular value decomposition (SVD).    The SVD is de- 

fined as 

i=i 

where 

and 

HH   u. = 

H^ v. 

X. u. 
i —i 

i —i 

\ 
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Hopefully,  I will be much smaller than N  .    Then utilizing the pseudo 

inverse for inverting H,  one obtains 

H"1 -E ^u-vt 

Then an estimate of the object,  f(x, y),  is given by 

«.        -1 
f = H      £ 

Ä*   u.V.  £ 
"l   —1 —1 ■B- 

i=l 

which becomes a sum of separable dot products.    To guarantee a positive 

restoration it is suggested that a vector-wise or point-wise recursive 

algorithm be developed within the above summation as done   in the modi- 

fied Van Gittert technique. 

The advantages of the SVD technique are minimal storage require- 

ment,  i. e.  I x N locations,  and rapid pseudo inverse calculations. 

8. 4.    Vector Scanning Model of Image Motion 

Alexander A.  Sawchuk 

The difficulty of restoring images blurred by motion, particularly 

spac; -variant motion, has I'id to the use of special computation tech- 

niques for this purpose [l] - [3] .    One promising technique known as 

vector scanning effectively converts the two spatial dimensions of an 

image into a sequence of vectors with one   spatial dimension to simplify 

the processing.    This project attempts to  find useful physical models 

for the motion degradation in a vector scanning context.    Both space- 

invariant and space-variant motion blur will be considered. 

References 

1. A. A.  Sawchuk, "Space-Variant Image Motion Degradation and Res- 
toration,"    Proceedings of the IEEE.   Vol.   50, p.  854,   1972. 
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2, N,  E.  Nahi and T.  Assefi,  "Bayesian Recursive .mage Enhancement,' 
IEEE Transaction on Computers,  July 1972. 

3. N.  E.  Nahi,  "Role of Recursive Estimation in Statistical Image 
Enhancement,"    Proceedings of the IEEE,   Vol.  60,  July 1972. 

8. 5.    Two Level Statistical Representation of Images and Nonlinear 

Kaiman Filtering 

N.  E.  Nahi 

The objective of this study will be  to   represent a picture by a 

combination of:    1)   statistics of the background;   2)   statistice of the 

object detail (th*» features included within the object); and 3)   the sta- 

tistics representing the size of the object and its location within the 

picture.    An important factor considered is the fact that the object, 

with its own statistics,  replaces a portion of background having dif- 

ferent statistics,  where only statistical information on the size and lo- 

cation of thu replaced portion is available.    A dynamic model of such a 

procese is clearly a nonlinear stochastic system.    The enhancement 

then requires development of appropriate nonlinear recursive filters [1]. 

Reference 
1.    N.   E.   Nahi,   Estimation Theory and Applications.  Wiley,   1969. 

8. 6.    Textural Measures Applied to Terrestrial Features 

Richard P.  Kruger 

In the near future an effort will be made to gather a data base of 

terrestrial images for processing using textural measures presently 

applied to biomedical imagery.    This data will consist of satellite or 

high altitude aerial reconnaissance imagery.    Initial classification will 

attempt to discriminate man made from naturally occurring terrain 

features with further subdividing of these major categories to await 

initial results. 

8. 7   Imaging Systems Inversion 

Ronald S.  Hershel 

In many imaging systems there is a great need in exploring 
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approaches to solving nonlinear simultaneous equations of the form 

M (x)   x   =   y 

when explicit representation of I© or ID)      are not required.    Applica- 

tion of such algorithms to positive and nonlinear restoration techniques 

are immediate.    In the study emphasis will be placed on convergence 

speed and stability. 
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The following is a list of papers, articles,  and reports publ shed 
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